
D E E P A N D S H A L L O W T Y P E S

ben greenman

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Khoury College of Computer Sciences
Northeastern University

Boston, Mass.

November 2020

Ben Greenman:
Deep and Shallow Types,
Doctor of Philosophy, Northeastern University, Boston, Mass.
© November 2020

A B S T R A C T

The design space of mixed-typed languages is lively but disorganized.
On one hand, researchers across academia and industry have con-
tributed language designs that allow typed code to interoperate with
untyped code. These design efforts explore a range of goals; some im-
prove the expressiveness of a typed language, and others strengthen
untyped code with a tailor-made type system. On the other hand,
experience with type-sound designs has revealed major challenges.
We do not know how to measure the performance costs of sound
interaction. Nor do we have criteria that distinguish “truly sound”
mixed-typed languages from others that enforce type obligations lo-
cally rather than globally.

In this dissertation, I introduce methods for assessing mixed-typed
languages and bring order to the design space. My first contribution
is a performance-analysis method that allows language implementors
to systematically measure the cost of mixed-typed interaction.

My second contribution is a design-analysis method that allows
language designers to understand implications of the type system.
The method addresses two central questions: whether typed code can
cope with untyped values, and whether untyped code can trust static
types. Further distinctions arise by asking whether error outputs can
direct a programmer to potentially-faulty interactions.

I apply the methods to several designs and discover limitations
that motivate a synthesis of two ideas from the literature: deep types
and shallow types. Deep types offer strong guarantees but impose a
high interaction cost. Shallow types offer weak guarantees and better
worst-case costs. This dissertation proves that deep and shallow types
can interoperate and measures the benefits of a three-way mix.

5

7

To Sarah and the Little Bears

A C K N O W L E D G M E N T S

Thank you Sarah Lee Greenman for eight years of love, support, and
civilizing guidance. Without Sarah, I might still be a Ph.D. student
(why not?) living the monastic lifestyle. You know the drill: saltine
crackers and peanut butter, candlelight, frequent nights at the lab,
and austere conditions at home. With Sarah, I have two cats to attend
and a baby on the way. It’s been more fun, too.

Thank you parents for twenty-nine years of love and all kinds of
support. One stormy high-school afternoon, I set out to test my do-
mestic liberty by reading The Communist Manifesto at home. But in-
stead of outrage, this action met calm encouragement. “That’s great.”
I may have finished the book all the same, but what stands out is a
lesson in patience and respect for primary sources.

Thank you Matthias Felleisen for teaching me how to be a scien-
tist, and that there is much more to programming languages than
dependent type systems and lambda combinators.

Thank you committee members: Jan Vitek, Amal Ahmed, Fritz
Henglein, Shriram Krishnamurthi, and Sam Tobin Hochstadt. Suffice
it to say, they improved this dissertation and taught rigorous theory,
reproducible artifacts, and critical discussion.

Ten years ago I was happily working as a janitor for Pete Migliorini
and attending Hudson Valley Community College, getting ready to
transfer to the ILR School at Cornell the next year. One night, be-
tween cleanings, I got talking to the security guard (Rusty?) about
life and college. “Learn a trade,” he said, “something they can’t take
away from you.” That was some excellent advice. Next semester I
took a programming course from Andrew Hurd, who suggested we
students code on paper first instead of throwing ideas at the Java com-
piler. What an idea. The following Fall at Cornell, my housemates
Kevin Dolan, Dan Rothenberg, Dave Viera, and Mark Vigeant told me
to minor in computing rather than physics. “Jobs are good in CS; you
can earn as much as the majors.” Nicole Roy explained the degree
requirements, and things snowballed from there. Thorsten Joachims
sparked my interest in programming languages by remarking that
there is no Moore’s Law for humans. Ramin Zabih taught me a first
decent language (OCaml 3.12). Nate Foster hired me as a teaching
assistant; did he know I was an ILR major? Classmates Ben Carriel
and Sam Park, among many others, inspired harder and better work.
Ross Tate helped me to succeed at a first research project and to apply
broadly for graduate school. Ehsan Hoque insisted I go somewhere
new, really anywhere but Cornell. Fabian Muehlboeck recommended
the PRL Lab at Northeastern. Thank you all.

9

https://felleisen.org/matthias/
http://janvitek.org/
http://www.ccs.neu.edu/home/amal/
http://hjemmesider.diku.dk/~henglein/
http://hjemmesider.diku.dk/~henglein/
http://cs.brown.edu/~sk
http://samth.github.io
https://www.linkedin.com/in/peter-migliorini-0a770b125
http://www.hvcc.edu/
https://www.ilr.cornell.edu/
https://www.albany.edu/computer-science/faculty/andrew-hurd
https://www.linkedin.com/in/kevin-j-dolan-655b3314
http://danielrothenberg.com
https://www.youtube.com/channel/UCO4N3t4IHxg4IAXZ2XvsKsQ
https://www.markvigeant.com
https://www.cs.cornell.edu/undergrad/ustaff
http://www.cs.cornell.edu/people/tj/
http://www.cs.cornell.edu/~rdz/
https://ocaml.org/releases/3.12.1.html
https://www.cs.cornell.edu/~jnfoster/
https://botlablp.com
https://www.csail.mit.edu/person/sam-park
http://www.cs.cornell.edu/~ross/
http://www.hoques.com
http://pub.ist.ac.at/~fmuehlbo/
https://prl.ccs.neu.edu

C O N T E N T S

1 what it’s all about 1

1.1 Thesis Statement 2

1.2 Dissertation Overview 2

1.3 Specification, Implementation, and Naming 3

1.3.1 Names in Prior Work 3

2 migratory typing 5

2.1 Pre-MT: Hits and Misses 5

2.1.1 Type Hints 5

2.1.2 Soft and Set-Based Inference 6

2.1.3 Inference via Dynamic Typing 7

2.1.4 Optional Typing 7

2.1.5 Type Dynamic 8

2.2 MT: Observations 8

2.2.1 MT-o1: untyped code exists 9

2.2.2 MT-o2: types communicate 9

2.2.3 MT-o3: sound types catch bugs 9

2.3 MT: Design Choices 10

2.3.1 MT-r1: types for untyped code 10

2.3.2 MT-r2: require annotations, reject programs 10

2.3.3 MT-r3: sound types 10

2.3.4 MT-r4: clear boundaries 11

2.4 Recent History 12

3 performance analysis method 13

3.1 Design Criteria 13

3.1.1 Representative Benchmarks 14

3.1.2 Exponential Compression 14

3.1.3 Report Overheads 15

3.2 Exhaustive Evaluation Method 15

3.2.1 By Example 15

3.2.2 By Definition 17

3.2.3 Known Limitations 19

3.3 Approximate Evaluation Method 19

3.3.1 Statistical Protocol 23

3.4 Benchmark Selection 23

3.4.1 From Programs to Benchmarks 23

3.5 Application 1: Typed Racket 24

3.5.1 Protocol 24

3.5.2 Benchmarks 24

3.5.3 Performance Ratios 29

3.5.4 Overhead Plots 29

3.5.5 Threats to Validity 33

3.6 Application 2: Reticulated Python 34

11

12 contents

3.6.1 Protocol 34

3.6.2 Benchmarks 35

3.6.3 Performance Ratios 39

3.6.4 Overhead Plots 40

3.6.5 Threats to Validity 44

3.7 Additional Visualizations 44

3.7.1 Exact Runtime Plots 44

3.7.2 Relative Scatterplots 45

3.7.3 Best-Path Plots 45

4 design analysis method 49

4.1 Chapter Outline 51

4.2 Assorted Behaviors by Example 51

4.2.1 Enforcing a Base Type 52

4.2.2 Validating an Untyped Data Structure 53

4.2.3 Uncovering the Source of a Mismatch 55

4.3 Towards a Formal Comparison 60

4.3.1 Comparative Properties in Prior Work 60

4.3.2 Our Analysis 62

4.4 Evaluation Framework 62

4.4.1 Surface Language 63

4.4.2 Semantic Framework 65

4.4.3 Type Soundness 66

4.4.4 Complete Monitoring 67

4.4.5 Blame Soundness, Blame Completeness 70

4.4.6 Error Preorder 72

4.5 Technical Development 72

4.5.1 Surface Syntax, Types, and Ownership 73

4.5.2 Three Evaluation Syntaxes 76

4.5.3 Properties of Interest 82

4.5.4 Common Higher-Order Notions of Reduction 84

4.5.5 Natural and its Properties 84

4.5.6 Co-Natural and its Properties 87

4.5.7 Forgetful and its Properties 89

4.5.8 Transient and its Properties 92

4.5.9 Amnesic and its Properties 97

4.5.10 Erasure and its Properties 102

4.6 Discussion 104

5 shallow racket 107

5.1 Theory 107

5.1.1 More-Expressive Static Types 108

5.1.2 Removing Type Dynamic 108

5.1.3 Adding Subtyping 110

5.1.4 From Elaboration to Completion 110

5.2 Work-in-progress: Blame 112

5.2.1 Basics of Transient Blame 112

5.2.2 Trusted Libraries Obstruct Blame 113

contents 13

5.2.3 Complex Flows, Tailored Specifications 114

5.2.4 Multi-Parent Paths 114

5.2.5 Expressive Link-Entry Actions 115

5.2.6 Types at Runtime 116

5.3 Implementation 117

5.3.1 Types to Shapes 117

5.3.2 Inserting Shape Checks 120

5.3.3 Optimizer 123

5.3.4 Bonus Fixes and Enhancements 124

5.4 Performance 125

5.4.1 Performance Ratios 127

5.4.2 Overhead Plots 127

5.4.3 Exact Runtime Plots 127

5.4.4 Blame Performance 135

6 deep and shallow, combined 137

6.1 Model and Properties 137

6.1.1 Syntax 137

6.1.2 Surface Typing 139

6.1.3 Evaluation Syntax 139

6.1.4 Evaluation Typing 141

6.1.5 Compilation 142

6.1.6 Reduction Relation 149

6.1.7 Single-Owner Consistency 149

6.1.8 Properties 152

6.2 Implementation 156

6.2.1 Deep and Shallow Interaction 156

6.2.2 Syntax Re-Use 157

6.2.3 Deep–Untyped Utilities 158

6.3 Evaluation 160

6.3.1 Expressiveness 160

6.3.2 Performance 163

7 future work 167

7.1 Transient with Blame, Natural without Blame 167

7.1.1 Transient Blame Filtering 167

7.2 Speed up Fully-Typed Transient 168

7.3 Improving Deep–Transient Interaction 169

7.4 Evaluate Alternative Shape Designs 170

7.5 Other Challenges 171

8 conclusion 173

a appendix 175

a.1 Sample Validation 175

a.2 Deep vs. Shallow Overhead 178

a.3 Missing Rules 182

a.4 More Evidence for Deep and Shallow 184

a.4.1 Migration Paths 184

a.4.2 Case Study: GTP Benchmarks 185

1
W H AT I T ’ S A L L A B O U T

A language that can mix typed and untyped code must balance three
conflicting dimensions:

Z Proofs: Static types should be accurate predictions about the
way a program behaves at run-time. If a type makes a claim
about an expression, then other code—typed or untyped—may
depend on it.

Z Performance: Adding types to part of a codebase should not
cripple its running time. On the contrary, a smart compiler
should use types to generate efficient code.

Z People: Untyped code must be free to create all sorts of values
and typed code must be able to interact with many untyped
designs. Programmers should not have to work around tough
constraints on the boundary between typed and untyped code.

The ideal mixed-typed language would satisy all three goals, letting
programmers add descriptive types to any component in a program
and supporting those types with deep guarantees and fast perfor-
mance. This ideal is not here yet. Friction between the dimensions
raises a whole host of problems about how to enforce types at run-
time. In particular, performance is the driving question. Type guar-
antees that can (in principle) be enforced against untyped code often
bring an overwhelming cost, slowing a program down by several or-
ders of magnitude.

Researchers have addressed the performance question with designs
that advertise low costs, but overall progress towards the ideal is
marginal because these designs are incomparable. For one, the per-
formance of a new mixed-typed language is intertwined with the
implementation of its host language; comparing performance across
different languages is hopeless. Second, the new designs typically
compromise on proofs or people. Lacking an apples-to-apples com-
parison, it is impossible to decide whether a language has solved the
performance question.

The first half of this dissertation untangles the design space. I
present a method to measure performance, a method to measure type
guarantees, and basic requirements concerning the expressiveness of
such type systems. I apply these methods and conclude that there
are two promising designs: deep types via the natural semantics and
shallow types via the transient semantics. The impasse leads to my

1

2

thesis question, which asks whether a language can effectively com-
bine both techniques. In the second half of this dissertation, I provide
affirmative support for the thesis.

1.1 thesis statement

Deep and shallow types can coexist in a way that preserves their for-
mal properties Programmers can combine these types to strengthen
shallow-type guarantees, avoid unimportant deep-type runtime er-
rors, and lower the running time of typed/untyped interactions.

1.2 dissertation overview

Looking ahead, the first order of business is to lay down ground rules
for expressiveness. My goal is to combine typed and untyped code
in a migratory typing system, in which types accommodate the grown
idioms of an untyped host language (chapter 2). Languages that fail
the expressiveness criteria, however, can still benefit from the results.
Chapter 3 presents the first systematic method for evaluating per-
formance and validates this method through an empirical study of
two migratory typing systems: Typed Racket and Reticulated Python.
Both languages guarantee type soundness, but come with very dif-
ferent performance characteristics; more surpringly, they compute in-
compatible results for seemingly-equal code. Chapter 4 brings these
two languages, and several others, into a common model for a pre-
cise comparison of designs. The design-space analysis motivates a
compromise between two semantics: natural and transient. Chap-
ter 5 presents the first half of the compromise; namely, a transient
semantics for Typed Racket. Chapter 6 formally proves that deep
and shallow types can interoperate and reports the performance of a
Typed Racket variant that supports both natural and transient behav-
ior. The dissertation ends with a view to future work (chapter 7) and
reflections on the wider research context (chapter 8).

Overall, I present four major contributions:

1. the first performance-analysis method to systematically explore
the interactions enabled by a mixed-typed language;

2. the first design-analysis method to articulate the meaning of
types for both typed and untyped parts of a codebase;

3. a scaled-up transient that handles a rich language of types and
employs ahead-of-time optimizations; and

4. the first language that lets programmers migrate untyped code
to two type-sound disciplines: deep and shallow types.

1.3 3

1.3 specification, implementation, and naming

This dissertation is about different ways of mixing typed and untyped
code in a programming language. Each “way” starts from a rough
idea, comes to life via a formal semantics, and is tested against formal
specifications. Different instances of these three concepts need names.

My primary focus is on two rough ideas: deep types and shal-
low types. Deep types are nearly as good as static types. If types
in a statically-typed language provide a certain guarantee, then the
deep versions of those types strive for the same guarantee no matter
what untyped code throws at them. Shallow types are weaker than
deep types, but better than nothing. A shallow type may provide a
temporary guarantee, and may permit more behaviors than the cor-
responding static type.

These two ideas are accompanied by two leading semantics: natu-
ral and transient (chapter 4). Natural realizes deep types by carefully
monitoring the boundaries between typed and untyped code—either
with exhaustive assertions or proxy wrappers. Transient realizes shal-
low types by rewriting all typed code to check the basic shape of
every value that might be from untyped.

The two properties that distinguish these semantics, and thereby
provide a formal distinction between deep and shallow and weaker
ideas, are complete monitoring and type soundness (chapter 4). Nat-
ural satisfies complete monitoring while transient does not. Both
natural and transient satisfy a non-trivial type soundness. Weaker
mixings are unsound.

I use informal words to talk about different “ways of mixing typed
and untyped code,” including: methods, strategies, and approaches.
There is no hope in trying to be authoritative because the research
community is still seeking a best method for a useful combination.

1.3.1 Names in Prior Work

Tunnell Wilson et al. [109] introduce the names deep and shallow, but
use them for the natural and transient implementations. Greenman
and Felleisen [43] use higher-order for the deep idea and first-order for
the shallow idea.

Natural goes by many names. Vitousek et al. [114] and several oth-
ers call it guarded because the semantics keeps a firm barrier between
typed and untyped code. Chung et al. [21] introduce the word be-
havioral for both the semantics and its characteristic wrapper values.
Foundational papers simply call it gradual typing [54, 86, 103].

The name natural comes from Matthews and Findler [65], who use
it to describe a proxy method for transporting untyped functions into
a typed context. Earliers works on higher-order contracts [33], remote
procedure calls [76], and typed foreign function interfaces [78] em-

4

ploy a similar method. New et al. [73] present a semantic argument
that natural is indeed the only way to enforce the key properties of
static types.

2
M I G R AT O RY T Y P I N G

Migratory typing is a novel approach to an old desire: mixing typed
and untyped code. A typed programming language comes with a
strict sub-language (of types) that articulates what a program com-
putes. For better or worse, code that does not fit the sub-language
may not run. An untyped language runs any program in which the
primitive computations stick to legal values. The mixed-typed idea
is to somehow combine some good aspects of both. A programmer
should have some untyped flexibility and some typed guarantees.

Of course, flexibility and guarantees lie at two ends of a tradeoff.
More freedom to run programs means less knowledge about what a
new program might do, unless there are run-time checks to catch ex-
treme behaviors. Run-time checks slow down a computation, thus a
mixed-typed language needs to balance three desires: expressiveness,
guarantees, and performance.

Before a language design can address the central 3-way tradeoff, its
creators must decide what kinds of mixing to allow and what goals
to strive for. Migratory typing is one such theory. The goal is to add
static typing onto an independent untyped language. Programmers
create a mixed-typed program by writing types for one chunk of un-
typed code; that is, by migrating the chunk into the typed half of the
language. Both the goal and the method incorporate lessons from ear-
lier mixed-typed efforts (chapter 2.1), along with basic observations
about programming (chapter 2.2). The observations, in particular, mo-
tivate design choices that characterize migratory typing (chapter 2.3).

2.1 pre-mt : hits and misses

In the days before migratory typing, language designers explored
several ways to mix typed and untyped code. Some mixtures began
with an untyped language and allowed user-supplied type annota-
tions. Others began with a typed language and added untyped flex-
ibility. The following early works helped form the migratory typing
ideas behind my research.

2.1.1 Type Hints

Early Lisps, including MACLISP [70] and Common Lisp [92], have
compilers that accept type hints. In MACLISP, for example, a pro-
grammer can hint that a function expects two floating-point numbers

5

6

(DECLARE (FLONUM (F FLONUM FLONUM)))

(DEFUN (F A B) (PLUS A B))

Figure 1: Example type hint in MACLISP [77]. The compiler may
rewrite PLUS into code that assumes floating-point inputs.

and returns one to encourage the compiler to specialize the function
body (figure 1).

Any speedup due to type hints, however, comes at a risk. There is
no static type system to prove that hints are sensible claims. If a hint
is nonsense, then the compiled code may behave in unexpected ways.
Similarly, there is no dynamic guarantee that compiled code receives
valid inputs. If the function F in figure 1 is invoked on two strings, it
may compute an invalid result. In other words, type hints come with
all the perils of types in a C-like language.

History Note: Other early type systems for Lisp and Scheme go
well beyond the spartan type hints that appear in the MACLISP and
Common Lisp specifications. Cartwright [17] infers types that a the-
orem prover can depend on. Wand [119] presents a semantic proto-
typing system (SPS) that includes a type system for Scheme. Haynes
[50] uses row types to handle Scheme idioms, including variable-arity
polymorphism [80].

2.1.2 Soft and Set-Based Inference

In principle, type inference can bring static types to untyped code.
Research on soft typing pursues this goal in an ideal form by con-
structing types for any untyped program. Soft type systems never
raise a type error. Instead, a soft type checker widens types as needed
and inserts run-time checks to protect implicit down-casts [27, 121].

The key to the soft typing problem is to adapt inference from equal-
ities to inequalities [107]. In a language such as ML, a type describes
exactly how a variable may be used. Any out-of-bounds use is an
error by definition. Thus ML inference asks for a solution to a system
of equalities between variables and types. Inference for an untyped
language must relax the equality assumption to deal with the less-
structured design of untyped programs. Here, the natural types de-
scribe sets of values with compatible behavior. The inference problem
asks for types that over-approximate the behaviors in a set of values.

There are two known methods to solve type inequalities. Soft
inference adds slack variables to types, turns the inequalities into
equalities, and then uses Hindley-Milner style inference [27]. Set-

2.1 7

based inference solves the inequalities by computing a transitive clo-
sure through constructors over the entire program [3, 4, 34, 35, 36].
Both solutions, unfortunately, reveal major challenges for inference.
Types can quickly become unreadable as inference computes super-
sets based on the syntax of a program. Type structure depends on the
whole program; small syntactic changes can disrupt the overall typ-
ing, and reasoning about flows can lead to compile-time performance
issues [67]. These challenge suggest that full inference for untyped
code is impractical.

Wright [121] notes that user-provided annotations can help with
brittleness and readability, despite friction with the tenets of soft typ-
ing. Meunier [66] improves the performance of set-based analysis by
leveraging contracts at module boundaries. Their observations antic-
ipate the migratory typing approach to mixed-typed code.

2.1.3 Inference via Dynamic Typing

Henglein’s dynamic typing uses standard types and general-purpose
coercions to compile untyped code to an efficient representation [52].
The method starts with a conventional typed language and adds three
related ingredients: a universal sum type, called the dynamic type; co-
ercions that inject any precisely-typed value up to the dynamic type;
and (partial) coercions that project a dynamically-typed value down
to a non-dynamic type. This augmented core is the basis of a mixed-
typed language. Typed code maps directly to the core with no addi-
tional coercions. Untyped code may require coercions, but a smart
compiler can minimize their use. Henglein [51] compiles Scheme to
a monomorphic type system and is able to resolve at least 50% of
the coercions in six benchmarks. Henglein and Rehof [53] extend
the method to polymorphic types and implement IEEE Scheme using
Standard ML.

Conventional types, however, are not always sufficient to capture
untyped designs. For example, Henglein and Rehof [53] note that
Scheme conditionals end up with extra coercions into the dynamic
type. The designs can be expressed, but a tailored type system is
needed to maximize run-time efficiency.

2.1.4 Optional Typing

An optional, or pluggable, type system adds a static analysis to an
untyped language [15]. The approach is related to type hints in that
programmers must add annotations to untyped code. Optional types
are supported, however, by a full-fledged type checker and a no-op
compiler. The type checker is the static analysis; it uses types to find
basic logical errors. Compilation erases types to arrive at an untyped
program that can safely interoperate with the rest of the program.

8

Despite their widespread adoption (chapter 4.2), optional types are
a bit of a disappointment for the research community because these
types are unsound. A programmer cannot use optional types to pre-
dict the inputs that a function will receive, and likewise a compiler
cannot trust an optional type without inserting a run-time guard or
studying the values that can flow to the typed position.

History Note: Optional typing is one valid way to use Lisp type
hints. A Lisp compiler need not optimize based on type hints, and
it may even ignore types completely [70, 92]. Bracha and Griswold
[15] independently developed the optional style, explained why it is
a practical mode of use, and identified ways to safely optimize parts
of optional programs.

2.1.5 Type Dynamic

Statically-typed languages often need to interact with untyped val-
ues, perhaps though a database connection, web socket, or interac-
tive prompt. Both Abadi et al. [1] and Leroy and Mauny [62] thus
present static type systems with a special dynamic type. Typed code
can interact with a untyped value by first testing its structure; the
type system records observations.

Quasi-static typing extends the type-dynamic idea with implicit
structure tests [101]. Instead of asking the user to write and maintain
type-testing code, the quasi-static system generates run-time checks.
Consequently, programmers have less incentive to handle the dy-
namic type at the boundary to untrusted code. The result is a mixed-
typed language because entire blocks of code may have the dynamic
type throughout. Gradual typing emphasizes the mixed-typed idea
in quasi-static typing, contributes major technical improvements and
design discipline [86, 87], and has inspired a large body of static-to-
dynamic research (github.com/samth/gradual-typing-bib).

Implicit coercions to type dynamic, however, weaken type-proofs
in a gradual or quasi-static language. Rather than showing that com-
ponents do fit together, a gradually-typed program is something that
can fit together given good values at each occurrence of the dynamic
type. Words such as “plausibility” [101] and “consistency” [86] aptly
describe the weakened guarantees; gradual types can only point out
implausibilities and inconsistencies among non-dynamic types.

2.2 mt : observations

Migratory typing stands on three observations: untyped code ex-
ists, type annotations improve maintainability, and sound types are a
worthwhile ideal. On the surface, these basic opinions simply moti-
vate a typed/untyped mix; between the lines, however, they suggest
requirements for an effective mixed-typed language.

https://github.com/samth/gradual-typing-bib

2.2 9

2.2.1 MT-o1: untyped code exists

Untyped code is a fact. Large companies such as Dropbox, Facebook,
and Twitter started as untyped projects. Small teams continue to
employ untyped languages; indeed, most repositories on GitHub use
either JavaScript, Python, PHP, or Ruby (githut.info).

Once an untyped codebase is off the ground and the lack of reliable
type information becomes a maintenance bottleneck, programmers
have two options. The extreme option is to change languages. Twitter,
for example, was able to port its Ruby codebase over to Scala [112].
For teams that lack the time and expertise to make such a switch,
the alternative is to re-create any necessary benefits of types. An
exemplar of the second option is Sweden’s pension system, which
depends on a contract-laden Perl program [61]. The contracts ensure
that components in this huge program behave as intended.

Research on mixed-typed languages can be a great help to teams in
this second camp, that cannot afford to rewrite their codebase. Gen-
eral knowledge about how to design a companion type system can
reduce the development cost of an in-house solution like Sweden’s
contracts. And a tailor-made type system, if one exists, provides an
immediate solution to maintenance issues.

2.2.2 MT-o2: types communicate

Type annotations are an important channel of communication. For
human readers, they describe the high-level design of code. Even the
original author of a function can benefit from reading the types after
some time away from the codebase. For a compiler, annotations are
hints about what the programmer expects. Any type error messages
that can point to part of an annotation have a syntactic link to the
programmer who needs to deal with the errors.

2.2.3 MT-o3: sound types catch bugs

All static types can find typo-level mistakes, but only sound types
guarantee type-specified behavior. In a mixed-typed setting, a guar-
antee can make a world of difference. Picture a large untyped code-
base made up of several interacting components, and suppose that
one component behaves strangely. Adding unsound types to that one
component can reveal a syntactic mistake, but nothing more. Sound
types, on the other hand, will halt the program as soon as an incorrect
value appears in typed code. If the language can additionally report
the source of the untyped value and the rationale for the mismatched
type expectation, then the programmer has two clues about where to
begin debugging.

https://githut.info

10

Going beyond soundness, a mixed-typed language that satisfies
complete monitoring guarantees the run-time behavior of every type.
If a value flows across a type-annotated source position, then future
users of the value can depend on the type—no matter whether these
uses occur in typed or untyped code (chapter 4). Type soundness
makes no guarantee about behavior once a value flows out to an
untyped context; with complete monitoring, the types are in control
of all interactions.

2.3 mt : design choices

Taken broadly, migratory typing studies how to add types to un-
typed code. My dissertation builds on a more focused theory that is
grounded in the following principles. Typed Racket shares the same
theory [102, 107]. Our aim is to maximize the potential benefits of a
mixed-typed language, in spite of the risk that some goals may prove
unattainable.

2.3.1 MT-r1: types for untyped code

Migratory typing begins with an independent untyped language and
adds a companion type system. The new types and type system must
express common idioms from the untyped world; in other words, a
type system that demands a re-organizion of untyped code is not
acceptable.

2.3.2 MT-r2: require annotations, reject programs

Programmers must write type annotations for top-level and recursive
definitions. Extra annotations may guide type inference.

The type checker will reject ill-typed programs instead of creating a
run-time cast to bridge unequal types. Programmers must deal with
the type errors, either by inserting a cast or re-designing code.

2.3.3 MT-r3: sound types

Well-typed code must provide a soundness guarantee in which types
constrains the possible results of an evaluation. Both deep and shal-
low types are acceptable, but nothing less. For example, optional
typing satisfies an inadequate soundness guarantee that promises a
well-formed value but nothing about how the type of an expression
limits the outcomes.

2.3 11

Blame

Sound types catch bugs, but make no claims about actionable error
outputs. Blame is an additional property geared to useful errors that
tell a programmer where to begin debugging. To this end, a mixed-
typed language should try to present meaningful source locations
along with every run-time type mismatch error.

2.3.4 MT-r4: clear boundaries

Typed and untyped code must be linked at static and clearly visi-
ble API boundaries. In order for a typed module to interact with an
untyped value, the module must declare a type specification for the
value. An untyped module does not need to give specifications be-
cause any typed value that it imports comes with a static specification
for correct use.

By contrast, this dissertation is not directly concerned with true
gradual languages that include a dynamic type and infer boundaries
during typechecking [87]. Such languages can still benefit from my
results at an intermediate step, after occurrences of the dynamic type
have been replaced with precise types and casts. But one pragmatic
question remains: a true gradual language must find a way to com-
municate trouble at an inferred boundary up to the programmer, who
may not understand why the language decided to insert the cast that
eventually failed.

Requiring boundaries greatly simplifies and strengthens the type
system. It is simpler because there is no dynamic type; standard
definitions of types, subtyping, and all the rest suffice for the type
checker. It is stronger because there is no type precision relation to
allow constructions that a standard type system would rule out. In a
gradual language, code that looks typed can diverge through clever
use of the dynamic type; with boundaries, there is a clear line be-
tween the typed and untyped code. Refer to chapter 5.4.4 for an
example of how odd behaviors can slip into apparently-typed Reticu-
lated Python code.

Macro, Micro

Prior works make a distinction between macro-level and micro-level
gradual typing systems [99, 100]. These names express the same idea
as my boundary requirement, but in terms of granularity and with
the term “gradual typing” broadly construed to refer to any sound
mixed-typed language. Macro allows interaction between typed and
untyped chunks of code [103] whereas micro allows “fine-grained”
mixing via a dynamic type [86].

Looking back, I think there were two dimensions at play. First is
whether to include a dynamic type. Second is how to mix: whether to

12

migrate from an untyped host language or to add flexibility to a static
type system [42]. Micro/macro is a useful mnemonic for the first
dimension, but it is more direct to talk about dynamic/non-dynamic
and migratory/non-migratory as two choices in the design of a new
mixed-typed language.

2.4 recent history

Tobin-Hochstadt [102] developed migratory typing alongside Typed
Racket. The basic ideas arose from work on soft typing [27, 121],
higher-order contracts [31], language interoperability [40], and mod-
ular set-based analysis [66]. Subsequent work adapted migratory typ-
ing to multi-paradigm language features: compositional flow-based
reasoning [105], delimited continuations [98], variable-arity polymor-
phism [93], type-driven optimization [88], first-class classes [96], units
(first-class modules) [28], and refinement types [58]. Refer to Tobin-
Hochstadt et al. [107] for a ten-year retrospective. My dissertation
adds one step to this lineage. I began by studying the most pressing
challenge, performance costs, and arrived at the combination of deep
and shallow types.

3
P E R F O R M A N C E A N A LY S I S M E T H O D

This chapter is based on joint work with: Matthias Felleisen,
Daniel Feltey, Robert Bruce Findler, Zeina Migeed, Max S. New,
Asumu Takikawa, Sam Tobin-Hochstadt, and Jan Vitek [44, 46,
100]. The Typed Racket benchmarks presented in this chapter
have been improved over the years by: Spenser Bauman, Lukas
Lazarek, Cameron Moy, and Sam Sundar.

Sound types come with performance overhead in a mixed-typed lan-
guage because soundness is a claim about behavior and the only way
to control the behavior of untyped code is via run-time checks. These
checks impose a cost in proportion to the frequency of mixed-typed
interactions, the complexity of the type specifications that govern
boundaries, and the strength of the soundness guarantee.

Language designers must measure the performance of a mixed-
typed language to judge its overall usefulness in light of its guar-
antees. Type-sound code that runs too slowly is worthless. At a
finer grain, users need an idea of what overhead to expect when they
begin experimenting with types. Implementors need a comprehen-
sive performance summary to measure improvements to a language
and to compare alternative mixed-typed designs. Despite these re-
alities, early reports on mixed-typed languages typically lack perfor-
mance evaluation. A few acknowledge performance issues in pass-
ing [5, 104, 114]. Others show only the performance of fully-typed
code relative to fully-untyped code, skipping the novel configurations
in between [79, 115]. But in their defense, the development of a per-
formance method is a challenge in itself.

This chapter presents a systematic and scalable method to assess
the performance of a mixed-typed language. The method summa-
rizes performance for the exponentially-many ways that a program-
mer can mix typed and untyped code by focusing on a binary qual-
ity measure. Informally, a mixture is good if it runs within a user-
supplied overhead limit. Random sampling can approximate the pro-
portion of good mixtures for programs in which exhaustive evalua-
tion is not practical. Two language evaluations, for Typed Racket and
Reticulated Python, validate the method.

3.1 design criteria

The goal of performance evaluation is to predict the experiences of fu-
ture users. Intuition suggests that the users of migratory typing will
begin with an untyped codebase and add types step-by-step. Expe-

13

14

Figure 2: A Racket program with 5 modules supports 32 mixed-typed
configurations, including the fully-untyped and fully-typed versions.

rience with Typed Racket supports the intuition. Programmers add
types in an incremental fashion and experiment with all sorts of com-
binations. When typed libraries enter the picture, untyped program-
mers unknowingly create mixed-typed applications. In a typical evo-
lution, programmers compare the performance of the modified pro-
gram with the previous version. If the current performance is on par
with the previous, then all is well. Otherwise, the easy solutions are:
adding more types, and rewinding to a less-typed version. These ob-
servations and assumptions about users suggest three basic criteria
for an evaluation method.

3.1.1 Representative Benchmarks

An evaluation method has to measure programs, and the results of a
particular evaluation are limited by the chosen benchmarks. Bench-
mark programs that stem from realistic code and exercise a variety of
features are an important step toward generalizable results.

3.1.2 Exponential Compression

A mixed-typed language promises to support exponentially-many
combinations of typed and untyped code. In Typed Racket, for ex-
ample, a programmer can add types to any module of a program.
Thus a program with 5 modules leads to 25 possible combinations
(figure 2). Languages that can mix at a finer granularity support 2k

configurations, where k is the number of potentially-typed blocks.

Without evidence against certain mixtures, an evaluation must col-
lect data for every mixed-typed configuration. These huge datasets
call for a way to compress exponentially-many observations into a
compact summary.

3.2 15

3.1.3 Report Overheads

Because migratory typing starts from an untyped language, program-
mers can always revert to an untyped version of their codebase if
types prove too expensive. The existence of this fully-untyped base-
line helps anchor an evaluation. If a programmer can tolerate a cer-
tain overhead, say 13x, then a single number can summarize the good
parts of the exponentially-large configuation space; namely, the per-
cent of configurations that run fast enough. A second benefit is that
overheads make it easy to find points where types improve upon the
baseline; look for overheads under 1x.

3.2 exhaustive evaluation method

An exhaustive evaluation considers all ways that a programmer might
toggle type annotations. The method begins with a fully-typed code-
base, measures all possible mixed-typed configurations, and intro-
duces a compact visualization to summarize the results.

3.2.1 By Example

A Racket program is a collection of modules. Technically, there are
two kinds of modules in such a collection: the migratable modules
that the program’s author has direct control over, and the contextual
modules that come from an external library. A programmer can add
types to any migratable module. Thus a program with N migratable
modules opens a space of 2N mixed-typed configurations, and each
configuration depends on the same contextual modules.

For example, fsm is a small Racket program that simulates an econ-
omy (chapter 3.5.2). The main functionality is split across four mod-
ules; with migratory typing, this leads to sixteen mixed-typed con-
figurations. Figure 3 shows all these configurations in a lattice, with
the untyped configuration on the bottom and the fully-typed config-
uration on top. Nodes in the middle mix typed and untyped code;
each row groups all configurations with the same number of typed
modules. Lines between nodes represent the addition (or removal) of
types from one module.

The label below a configuration node reports its overhead relative
to the untyped configuration on Racket version 6.4. With these labels,
a language implementor can draw several conclusions about perfor-
mance overhead in fsm. A first observation is that the fully-typed
code runs equally fast as the untyped baseline. This 1x overhead is
also the overall best point in the lattice. Six other configurations run
within a 2x overhead, but the rest suffer from orders-of-magnitude
slowdowns. Types in fsm can come at a huge cost.

16

1x

1.6x 1498.4x 1512.6x 1.1x

1316.3x 1297.2x 1.8x 1.1x 1513.9x 1527x

1x 1307.5x 1295x 1.1x

1x

Figure 3: Performance overhead in fsm, on Racket v6.4.

Drawing such conclusions is not easy, however, even for this small
program. Manually analyzing a lattice for programs with eight or
more modules is clearly infeasible. Figure 4 presents a graphical alter-
native, an overhead plot, that reports configurations’ overhead relative
to the untyped baseline. Overhead plots are cumulative distribution
functions. As the function proceeds left-to-right for numbers D along
the x-axis, the curve shows the proportion of all configurations that
run at most D times slower than the untyped configuration. For short,
these are D-deliverable configurations. On the left, there is always at
least one 1-deliverable configuration; namely, the fully-untyped con-
figuration itself. The question is whether other configurations run
fast as well. To read such a plot quickly, focus on the area under the
curve. A large shaded area implies that a large number of configura-
tions have low overhead.

The second most important aspects of an overhead plot are the
two values of D where the curve starts and ends. More precisely, if
h : R+ →N is the CDF that counts the proportion of D-deliverable
configurations in a benchmark, the critical points are the smallest
overheads d0, d1 such that h(d0) > 0% and h(d1) = 100%. An ideal
start-value would lie between zero and one; if d0<1 then at least one
configuration runs faster than the baseline. The end-value d1 is the
overhead of the slowest-running configuration.

Lastly, the slope of a curve corresponds to the likelihood that ac-
cepting a small increase in performance overhead increases the num-
ber of deliverable configurations. A flat curve (zero slope) suggests
that the performance of a group of configurations is dominated by
a common set of type annotations. Such observations are no help
to programmers facing performance issues, but may help language
implementors fix inefficiencies.

Overhead plots scale to arbitrarily large datasets by compressing
exponentially-many points into a proportion. Furthermore, plotting
two curves on one axis compares relative performance. Figure 5

3.2 17

fsm

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

Figure 4: Overhead plot for fsm, on Racket v6.4. The unlabeled verti-
cal ticks mark, from left-to-right: 1.2x, 1.4x, 1.6x, 1.8x, 4x, 6x, 8x, 10x,
12x, 14x, 16x, and 18x.

fsm-6.4, fsm-7.7

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

fsm-6.4 fsm-7.7

Figure 5: Overhead plots for fsm, on Racket v6.4 and v7.7. The orange
curve for v7.7 is higher, showing a relative improvement.

demonstrates two curves for fsm: on Racket v6.4 and v7.7. The latter
curve shows a huge improvement thanks to collapsible contracts [29].
Indeed, every fsm configuration is 4-deliverable on Racket v7.7.

3.2.2 By Definition

The exhaustive evaluation method applies to other mixed-typed lan-
guages as well as Typed Racket. To encourage adaptations, the fol-
lowing definitions highlight key concepts. The prose uses Reticulated
Python as a running example.

In Reticulated, every parameter to a function, every function re-
turn position, and every class field can be typed or untyped. This is a
much finer granularity than Typed Racket’s, in which entire modules
must be typed as a unit. The added flexibility means that an ex-
perimenter must choose whether to explore: coarse, module-grained
mixes; fine, function-parameter mixes; or something in between.

Definition (granularity) The granularity of an experiment is the syn-
tactic unit at which it adds/removes type annotations.

18

For example, Takikawa et al. [100] evaluate Typed Racket at the
granularity of modules. Vitousek et al. [115] evaluate Reticulated
at the granularity of whole programs (missing all the ways that a
programmer can mix types), and Greenman and Migeed [44] evaluate
Reticulated at the granularity of whole functions and whole class field
sets (chapter 3.6.1).

After choosing a granularity, an experimenter must pick a suite of
programs to measure. A potential complication is that programs may
depend on external libraries or other modules that lie outside the
realistic scope of the evaluation.

Definition (migratable, contextual) The migratable code in a program
defines its configurations. The contextual code in a program is com-
mon across all configurations.

The granularity and the migratable code define the configurations
of a fully-typed program.

Definition (configurations) Let C → C′ if and only if program C′ can
be obtained from program C by annotating one migratable syntactic
unit. Let→∗ be the reflexive, transitive closure of the→ relation. The
configurations of a fully-typed program Cτ are all programs C such
that C→∗Cτ. Furthermore, Cτ is a fully-typed configuration. An untyped
configuration Cλ has the property Cλ→∗C for all configurations C.

In terms of prior work, the→ relation includes all possible type conver-
sion steps [46, 100]. The→∗ relation corresponds to term precision [87]
as follows: e0 →∗ e1 only if e1 v e0.

An evaluation must measure overhead relative to a useful base-
line. For migratory typing, the correct baseline is the original host-
language program.

Definition (baseline) The baseline performance of a program is its run-
ning time in the absence of migratory typing.

In Typed Racket, the baseline is the performance of Racket running
the untyped configuration. In Reticulated, the baseline is Python
running the untyped configuration. Be advised, Python-running-
untyped differs from Reticulated-running-untyped because Reticu-
lated inserts checks in every migratable module that it sees [114].

Definition (performance ratio) A performance ratio is the running time
of a configuration divided by the baseline performance.

An exhaustive performance evaluation measures the performance
of every configuration. To summarize the data, choose a notion of
“good performance” and count the proportion of “good” configura-
tions. In this spirit, Takikawa et al. [100] ask programmers to consider
the performance overhead they could deliver to clients.

Definition (D-deliverable) A configuration is D-deliverable, for some
D ∈ R+, if its performance ratio is no greater than D.

3.3 19

3.2.3 Known Limitations

Evaluation begins with a fixed set of types, but there are usually many
ways to type a piece of code. Consider the application of an identity
function to a number:

((λ(x) x) 61)

In Typed Racket, the parameter x can be given infinitely many cor-
rect types. The obvious choices are Integer and Number, but other
base types work, including Real and Natural. Untagged unions bring
many options: (U Real String), (U Real String (-> Boolean)),
and so on. Different choices entail different run-time checks, but the
method lacks a systematic way to explore equally-valid typings.

Along the same lines, the definition of granularity does not talk
about imprecise types. In Reticulated, the type Function([Str], Int)

has three less-precise variants that incorporate the dynamic type. The
method only looks at one fully-typed variant, but the others may have
notable performance implications.

Overhead plots (figure 4) rest on two assumptions. First is that
configurations with less than 2x overhead are significantly more prac-
tical than configurations with a 10x overhead or more. Hence the
plots use a log-scaled x-axis to encourage fine-grained comparison
in the 1.2x to 1.6x overhead range and to blur the distinction among
larger numbers. Second is that configurations with more than 20x
overhead are completely unusable in practice. Pathologies like the
1000x slowdowns in figure 3 represent a challenge for implementors,
but if these overheads suddenly dropped to 30x, the configurations
would still be useless to developers.

The main limitation of exhaustive evaluation, however, is its ex-
haustiveness. With 20 migratable units, an experiment requires over
1 million measurements. At a module-level granularity, this limit is
somewhat reasonable because each module can be arbitrarily large.
But at function-level granularity and finer, the practical limit quickly
rules out interesting programs.

3.3 approximate evaluation method

The proportion of D-deliverable configurations in a program can be
approximated using random sampling. First, choose several config-
urations and measure the proportion of D-deliverable configurations
in the sample. Next, repeat the experiment several times. Combining
the proportions in a confidence interval provides an estimate for the
true proportion.

Definition (95%-r, s-approximation) Given r samples each contain-
ing s configurations chosen uniformly at random, a simple random

20

approximation is a 95% confidence interval for the proportion of D-
deliverable configurations in each sample.

Intuitively, this method should lead to good results because it ran-
domly samples a stable population. If the true proportion of D-
deliverable configurations in a program happens to be 10%, then a
random configuration has a 1 in 10 chance of being D-deliverable.

A statistical justification depends on the law of large numbers and
the central limit theorem. Let d be a predicate that checks whether a
configuration is D-deliverable. Since d is either true or false for ev-
ery configuration, this predicate defines a Bernoulli random variable
Xd with parameter p, where p is the true proportion of D-deliverable
configurations. Consequently, the expected value of this random vari-
able is p. The law of large numbers states that the average of infinitely
many samples of Xd converges to p, the true proportion of deliverable
configurations. We cannot draw infinitely many samples, but per-
haps this convergence property means that the average of “enough”
samples is “close” to p. The central limit theorem implies that any
sequence of such averages is normally distributed around the true
proportion. A 95% confidence interval generated from sample aver-
ages is therefore likely to contain the true proportion.

The statistical argument reveals two weaknesses:

• First, there is no guarantee that every confidence interval based
on sampling contains the true proportion of D-deliverable con-
figurations. The results can mislead.

• Second, the confidence intervals could be huge. A wide interval
offers little insight, even if it happens to contain the true propor-
tion. In the extreme, a totally useless interval says that 0% to
100% of configurations are D-deliverable.

The argument does say, however, that an interval is very likely to be
useful if it is based on a huge number of samples each with a huge
number of configurations. The challenge is to find parameters that
engineer a compromise between size and precision.

By comparing sample data to the ground-truth from an exhaustive
evaluation, I have found that linear sampling gives small and accurate
intervals. Figures 6 and 7 demonstrate on a few Typed Racket and
Reticulated programs. The blue curve and shaded area on each plot is
the exhaustive data. The orange interval is a 95% confidence interval
based on r = 10 each containing s = 10∗N configurations, where
N is the number of typed units in the benchmark program. The
sample intervals all tightly cover the true proportion of D-deliverable
configurations. Appendix A.1 contains additional empirical data.

3.3 21

take5

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 80 confgurations

acquire

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 90 confgurations

tetris

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 90 confgurations

synth

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 100 confgurations

gregor

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 130 confgurations

quadT

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 140 confgurations

quadU

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 140 confgurations

Figure 6: Typed Racket sample validation.

22

Espionage

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 120 confgurations

PythonFlow

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 120 confgurations

pystone

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 140 confgurations

chaos

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 150 confgurations

futen

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 150 confgurations

take5

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 160 confgurations

slowSHA

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 170 confgurations

Figure 7: Reticulated sample validation.

3.4 23

3.3.1 Statistical Protocol

For readers interested in reproducing the above results, here are ad-
ditional details about the protocol behind figures 6 and 7.

To generate one random sample, select 10∗N configurations uni-
formly at random and compute their overhead. Sampling with re-
placement gives the same theoretical results as sampling without re-
placement. The figures employ sampling without replacement in the
hope of finding new configurations with exceptional overhead.

To generate a confidence interval for the number of D-deliverable
configurations based on a group of samples, calculate the proportion
of D-deliverable configurations in each sample and generate a 95%
confidence interval from the proportions. This is the simple index
method for computing a confidence interval from a sequence of ratios
(arxiv.org/pdf/0710.2024v1.pdf). A more advanced method may
give tighter intervals, if extra precision is needed [30].

3.4 benchmark selection

Representative benchmarks are difficult to come by. My best-effort
approach is to seek out programs that serve a realistic purpose. Sev-
eral implement games, and re-play a game round. Others adapt li-
brary code with an example use. All of the forthcoming Typed Racket
benchmarks follow this approach (chapter 3.5.2). Many of the Retic-
ulated benchmarks (chapter 3.6.2), however, come from prior work
and are smaller scripts in the spirit of the Gabriel benchmarks [38].

3.4.1 From Programs to Benchmarks

To convert a program into a benchmark, we:

1. partition the program into migratable and contextual code;

2. build a migratable driver module that runs the program and
collects timing information;

3. remove any non-determinism or I/O actions;

4. find types for the migratable code.

The final step, finding types for untyped code, can be difficult.
First, the type checker may require casts or refactorings to deal with
untyped code. For example, untyped Racket code may assume that
the application (string->number "42") returns an integer. The as-
sumption is correct, but the type checker cannot follow the reasoning
and needs a run-time check. Reticulated does not have union types,
and therefore falls back to Dyn for many common untyped patterns.

https://arxiv.org/pdf/0710.2024v1.pdf

24

An experimenter must choose whether to rewrite the pattern or ac-
cept the trivial typing.

Second, some deep type boundaries may lack run-time support.
Typed Racket cannot enforce the type (U (-> Real) (-> Integer)) at
a boundary because its contracts lack unions for higher-order wrap-
pers. The work-around is to rewrite the boundaries or, if possible,
simplify the types. For the above, (-> Real) is a viable choice.

Third, each static import of a struct type into Typed Racket code
generates a unique datatype. Typed modules that share instances
of an untyped struct must therefore reference a common definition.
Typed Racket benchmarks with this issue include additional contex-
tual modules, called adaptor modules, to provide a canonical import.

3.5 application 1 : typed racket

This subchapter presents an exhaustive evaluation of Typed Racket
v7.7 on a set of twenty-one benchmark programs; namely, the gtp

suite v6.0 (docs.racket-lang.org/gtp-benchmarks/index.html). The
main purpose of this evaluation is to confirm that the exhaustive
method provides a useful summary of a mixed-typed language. A
secondary result is that it reveals performance challenges that Typed
Racket must overcome.

3.5.1 Protocol

granularity The granularity of this evaluation is modules, same
as the granularity of Typed Racket. One syntactic unit in the experi-
ment is one entire module.

data collection For each configuration in each benchmark, a
control script compiled the whole program, ran once ignoring perfor-
mance, and ran four more times collecting data. These actions used
the standard Racket 7.7 BC bytecode compiler, JIT compiler, and run-
time settings. The control script ran on a dedicated Linux machine
with a i7-4790 processor. The processor has 16GB RAM and four
cores, and ran at 3.60GHz.

3.5.2 Benchmarks

The gtp benchmark suite consists of twenty-one programs. Below,
these benchmarks appear in order of increasing size, as measured
by the number of migratable modules. Each comes with a summary
and four fields: Origin indicates the benchmark’s source, Purpose de-
scribes what it computes, Author credits the original author, and De-
pends lists significant contextual libraries.

https://docs.racket-lang.org/gtp-benchmarks/index.html

3.5 25

sieve
Origin : Synthetic
Purpose : Generate prime numbers

Author : Ben Greenman
Depends: None

Demonstrates a scenario where client code is tightly coupled to
higher-order library code. The library implements a stream data
structure; the client builds a stream of prime numbers.

forth
Origin : Library
Purpose : Forth interpreter

Author : Ben Greenman
Depends: None

Interprets Forth programs. The interpreter represents calculator
commands as a list of first-class objects.

fsm, fsmoo
Origin : Economics research
Purpose : Economy simulator

Author : Linh Chi Nguyen
Depends: None

Simulates the interactions of economic agents via finite-state au-
tomata [75]. This benchmark comes in two flavors: fsm stores the
agents in a mutable vector and fsmoo uses a first-class object.

mbta
Origin : Educational
Purpose : Interactive map

Author : Matthias Felleisen
Depends: graph

Builds a map of Boston’s subway system and answers reachability
queries. The map interacts with Racket’s untyped graph library.

morsecode

Origin : Library
Purpose : Morse code trainer

Author : John Clements and Neil
Van Dyke
Depends: None

Computes Levenshtein distances [63] and morse code translations
for a fixed sequence of pairs of words.

zombie
Origin : Research
Purpose : Educational Game

Author : David Van Horn
Depends: None

Implements a game where players dodge “zombie” tokens. Cur-
ried functions over symbols implement game entities and repeatedly
cross type boundaries.

http://docs.racket-lang.org/forth/index.html
https://github.com/mfelleisen/sample-fsm
http://github.com/stchang/graph
https://github.com/jbclements/morse-code-trainer/tree/master/morse-code-trainer
https://github.com/philnguyen/soft-contract

26

dungeon
Origin : Application
Purpose : Maze generator

Author : Vincent St. Amour
Depends: None

Builds a grid of wall and floor objects by choosing first-class classes
from a list of “template” pieces. Originally, the program imported
the Racket math library for array operations. The benchmark uses
Racket’s vectors instead of the math library’s arrays because Typed
Racket v6.2 cannot compile the type (Mutable-Array (Class)) to a
contract.

jpeg

Origin : Library
Purpose : JPEG toolkit

Author : Andy Wingo
Depends: math/array,
rnrs/bytevectors-6

Parses a bytestream of JPEG data to an internal representation, then
serializes the result.

zordoz
Origin : Library
Purpose : Explore bytecode

Author : Ben Greenman
Depends: compiler-lib

Traverses Racket bytecode (.zo files). The untyped compiler-lib

library defines the bytecode data structures.

lnm
Origin : Synthetic
Purpose : Data visualization

Author : Ben Greenman
Depends: plot, math/statistics

Renders overhead plots. Two modules are tightly-coupled to Typed
Racket libraries.

suffixtree
Origin : Library
Purpose : String tools

Author : Danny Yoo
Depends: None

Implements Ukkonen’s suffix tree algorithm [110] and computes
longest common subsequences between strings.

kcfa
Origin : Educational
Purpose : Explanation of k-CFA

Author : Matt Might
Depends: None

Performs 1-CFA on a lambda calculus term that computes 2 ∗ (1 +
3) = 2 ∗ 1 + 2 ∗ 3 via Church numerals. The (mutable) binding envi-
ronment flows throughout functions in the benchmark.

snake
Origin : Research
Purpose : Educational Game

Author : David Van Horn
Depends: None

Implements the Snake game; the benchmark replays a fixed se-
quence of moves.

http://github.com/wingo/racket-jpeg
https://docs.racket-lang.org/math/array.html
https://docs.racket-lang.org/r6rs/R6RS_Libraries.html#(mod-path._rnrs%2Fbytevectors-6)
http://github.com/bennn/zordoz
http://docs.racket-lang.org/raco/decompile.html#%28mod-path._compiler%2Fdecompile%29
https://docs.racket-lang.org/plot/
https://docs.racket-lang.org/math/stats.html
https://github.com/dyoo/suffixtree
http://matt.might.net/articles/implementation-of-kcfa-and-0cfa/
https://github.com/philnguyen/soft-contract

3.5 27

take5
Origin : Educational
Purpose : Game

Author : Matthias Felleisen
Depends: None

Manages a card game between AI players.

acquire
Origin : Educational
Purpose : Game

Author : Matthias Felleisen
Depends: None

Simulates a board game via message-passing objects. These objects
encapsulate the core data structures and seldom cross module bound-
aries.

tetris
Origin : Research
Purpose : Educational Game

Author : David Van Horn
Depends: None

Replays a pre-recorded game of Tetris.

synth

Origin : Application
Purpose : Music synthesis DSL

Author : Vincent St. Amour and
Neil Toronto
Depends: None

Converts a description of notes and drum beats to WAV format. Mod-
ules in the benchmark come from two sources, a music library and
an array library.

gregor
Origin : Library
Purpose : Date and time library

Author : Jon Zeppieri
Depends: cldr, tzinfo

Provides tools for manipulating calendar dates. The benchmark
builds tens of date values and runs unit tests on these values.

quadT, quadU
Origin : Application
Purpose : Typesetting

Author : Matthew Butterick
Depends: csp

Converts S-expression source code to PDF format. The two versions
of this benchmark came from the original author. First, quadU is based
on a foundational untyped codebase. Second, quadT comes from a
migrated, typed codebase with slightly different behavior. Overhead
is worse in quadT, but the types in quadU are far less descriptive.

Figure 8 tabulates the size of the migratable code in the benchmark
programs. The column labeled N reports the number of migratable
modules; the configuration space for each program has 2N points.
The SLOC column reports lines of code in the fully-typed configura-
tion. With type annotations, these benchmarks gain between 10 and
300 lines of code. For details about the graph structure of each bench-
mark and the specific types on boundaries, refer to the gtp web page:
docs.racket-lang.org/gtp-benchmarks/index.html.

https://github.com/mfelleisen/Acquire
https://github.com/philnguyen/soft-contract
http://github.com/stamourv/synth
https://docs.racket-lang.org/gregor/index.html
https://docs.racket-lang.org/cldr-core/index.html
https://docs.racket-lang.org/tzinfo/index.html
https://github.com/mbutterick/quad
https://github.com/mbutterick/csp
https://docs.racket-lang.org/gtp-benchmarks/index.html

28

Benchmark N SLOC
sieve 2 52

forth 4 300

fsm 4 248

fsmoo 4 279

mbta 4 357

morsecode 4 264

zombie 4 342

dungeon 5 624

jpeg 5 1599

zordoz 5 1624

lnm 6 636

suffixtree 6 671

kcfa 7 296

snake 8 209

take5 8 364

acquire 9 2012

tetris 9 357

synth 10 974

gregor 13 1156

quadT 14 7019

quadU 14 7055

Figure 8: Static characteristics of the migratable code in the gtp bench-
marks. N = number of components = number of modules. SLOC =
source lines of fully-typed code as reported by David A. Wheeler’s
sloccount.

https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/

3.5 29

Benchmark typed/untyped
sieve 0.97

forth 0.65

fsm 0.54

fsmoo 0.88

mbta 1.63

morsecode 0.73

zombie 1.79

dungeon 0.99

jpeg 0.40

zordoz 1.35

lnm 0.64

suffixtree 0.69

kcfa 1.04

snake 0.96

take5 0.97

acquire 1.22

tetris 0.97

synth 0.96

gregor 0.98

quadT 0.99

quadU 0.79

Figure 9: Coarse ratios for the gtp benchmarks v6.0 on Racket v7.7.

3.5.3 Performance Ratios

Figure 9 lists the overhead of fully-typed code relative to untyped
code. In sieve, for example, the typed configuration runs slightly
faster than untyped. In mbta, the typed configuration is over 1.5x
slower because of a boundary to an untyped contextual module.

Overall, many benchmarks run significantly faster with types (8
of 21). These programs have few boundaries to untyped contextual
modules and benefit from type-directed compilation. The highest
ratios stay within a modest 2x overhead.

3.5.4 Overhead Plots

Figures 10, 11, and 12 present an exhaustive evaluation in a series of
overhead plots. As in figure 4, the plots are cumulative distribution
functions for the proportion of D-deliverable configurations.

Many curves are quite flat; they demonstrate that migratory typ-
ing introduces large and widespread performance overhead in the
corresponding benchmarks. Among benchmarks with fewer than six

30

sieve

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
4 confgurations

forth

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

fsm

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

fsmoo

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

mbta

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

morsecode

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

zombie

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

Figure 10: Typed Racket overhead plots (1/3). The x-axis ranges over
slowdown factors, the y-axis counts configurations, and a point (x, y)
shows the proportion of x-deliverable configurations.

3.5 31

dungeon

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

jpeg

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

zordoz

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

lnm

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

suffxtree

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

kcfa

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
128 confgurations

snake

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
256 confgurations

Figure 11: Typed Racket overhead plots (2/3).

32

take5

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
256 confgurations

acquire

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
512 confgurations

tetris

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
512 confgurations

synth

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
1,024 confgurations

gregor

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
8,192 confgurations

quadT

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16,384 confgurations

quadU

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16,384 confgurations

Figure 12: Typed Racket overhead plots (3/3).

3.5 33

modules, the most common shape is a flat line near the 50% mark.
Such lines imply that the performance of a group of configurations
is dominated by a single type boundary. For instance, there is one
type boundary in fsmoo that adds overwhelming slowdown when
present; all eight configurations with this boundary have over 20 over-
head. Benchmarks with six or more modules generally have smoother
slopes, but five such benchmarks have essentially flat curves. The
overall message is that for many values of D between 1 and 20, few
configurations are D-deliverable.

In 15 benchmarks, no more than half the configurations are 2-
deliverable. This is quite bad. The situation is worse for lower (more
realistic) overheads, and rarely improve at slightly higher overheads.
Even at a generous 10x factor, no more than half the configurations
in nine benchmarks are good enough.

The curves’ endpoints describe the extremes of migratory typing.
The left endpoint gives the percentage of configurations that run at
least as quickly as the untyped configuration. With few exceptions,
notably lnm, these configurations are a low proportion of the total.
The right endpoint shows how many configurations suffer at least
20x overhead. Ten benchmarks have at least one such configuration.

In summary, the application of the evaluation method projects a
negative image of Typed Racket’s sound migratory typing. Only
a small number of configurations in the benchmark suite run with
low overhead; a mere 16% of all configurations are 1.4-deliverable on
Racket v7.7. Many demonstrate extreme overhead; only 81% of all
configurations are 20-deliverable on v7.7.

3.5.5 Threats to Validity

The concerns raised in chapter 3.4.1 affect this evaluation. In partic-
ular, each benchmark explores one choice of types. Different types
may lead to different conclusions, as quadT and quadU demonstrate
at a small scale.

The kcfa benchmark is modularized according to comments in the
original, single-module program. If the original author had made the
split, there could be different overhead.

The suffixtree, synth, and gregor benchmarks each have a single file
containing all their data structure definitions, but the original pro-
grams defined these structures in the same module as the functions
on the structures. Additionally, snake and tetris define their data struc-
tures in one file. The boundary to the data is often expensive, and
may lead to higher overheads than a typical design that puts tightly-
coupled functions next to the data.

The gregor, mbta, quad, and zordoz benchmarks depend on untyped
libraries. To enable library use from typed code, each benchmark
comes with a typed interface file. The interface solution is standard

34

for Typed Racket users, but it adds overhead that may skew the pic-
ture of costs within the benchmark. If the libraries came with typed
interface files, then an experiment could use those contextual mod-
ules with no questions. As it stands, our choice of interface types
constitutes a threat. Other interface choices may lead to different con-
clusions. Alternatively, it may be best to remove these costs by typing
the libraries or (unsafely) trusting the interface.

3.6 application 2 : reticulated python

Reticulated Python is the original home of the transient semantics
for mixed-typed programs [113]. Transient is a type-sound semantics
(chapter 4) that does not rely on higher-order wrappers or full run-
time checks. Instead, transient uses light “shape checks” throughout
typed code. One would expect fast performance from transient on
mixed-typed code. The first-ever evaluation, however, only reports
data for untyped and fully-typed programs [115].

This subchapter presents a systematic evaluation of Reticulated
without its experimental blame algorithm [44]. The data offers a big-
picture view of transient, further validates the approximate method,
and identifies bugs in the measured version of Reticulated. Overall,
transient checks never exceed a 10x slowdown in the benchmarks.

3.6.1 Protocol

granularity The granularity of this evaluation is function and
class fields. One syntactic unit in the experiment is either one function,
one method, or the collection of all fields for one class. Figure 13

demonstrates this granularity with a simple Reticulated module. The
class Cash has two fields and one method that requires three argu-
ments; the module also include a function that instantiates a Cash ob-
ject with exactly 5 dollars. Reticulated permits the removal of every
type in the figure, giving 128 possible configurations. The granularity
for our experiment, however, explores the 8 configurations obtained
by removing types from the field declaration, the method, and/or the
function each as a complete unit.

data collection The data is exhaustive for benchmarks with at
most 217 configurations and approximate for larger benchmarks. The
approximations use ten samples each containing 10∗(F + C) configu-
rations, where F is the number of functions in the benchmark and C
is the number of classes.

All data comes from jobs that we ran on the Karst at Indiana Univer-
sity computing cluster. Each job:

1. reserved all processors on one node;

https://kb.iu.edu/d/bezu
https://kb.iu.edu/d/bezu

3.6 35

@fields({"dollars": Int, "cents":Int})

class Cash:

 def __init__(self:Cash, d:Int, c:Int)->Void:

 self.dollars = d

 self.cents = c

def make_five()->Cash:

 return Cash(5, 0)

Figure 13: Reticulated code that leads to 23 configurations in the ex-
periment, but supports 27 total.

2. downloaded fresh copies of Python 3.4.3 and Reticulated com-
mit e478343;

3. repeatedly: selected a random configuration from a random
benchmark, ran the configuration’s main module 40 times, and
recorded the result of each run.

Cluster nodes are IBM NeXtScale nx360 M4 servers with two Intel
Xeon E5-2650 v2 8-core processors, 32 GB of RAM, and 250 GB of
local disk storage. All data collection scripts are online: github.com/
nuprl/retic_performance

3.6.2 Benchmarks

There are twenty-one benchmarks in total. Five originate from case
studies by Vitousek et al. [114]. Twelve are from the evaluation by Vi-
tousek et al. [115] on programs from the Python Performance Bench-
mark Suite. The remaining Four originate from open-source pro-
grams.

The following descriptions credit each benchmark’s original author,
state whether the benchmark depends on any contextual modules,
and briefly summarize its purpose.

fannkuch
Origin : pyperformance
Purpose : Test integers, vectors

Author : Sokolov Yura
Depends: None

Implements a classic LISP microbenchmark [8].

nqueens
Origin : pyperformance
Purpose : Puzzle

Author : unknown
Depends: None

Solves the 8-queens problem by a brute-force algorithm.

https://github.com/mvitousek/reticulated/commit/e478343ce7c0f2bc50d897b0ad38055e8fd9487d
https://github.com/nuprl/retic_performance
https://github.com/nuprl/retic_performance
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://developers.google.com/optimization/puzzles/queens

36

http2
Origin : Library
Purpose : HTTP utilities

Author : Joe Gregorio
Depends: urllib

Converts a collection of Internationalized Resource Identifiers to
equivalent ASCII resource identifiers.

nbody
Origin : pyperformance
Purpose : Test float ops

Author : Kevin Carson
Depends: None

Models the orbits of Jupiter, Saturn, Uranus, and Neptune.

pidigits
Origin : pyperformance
Purpose : Test big integer ops

Author : unknown
Depends: None

Microbenchmarks big-integer arithmetic.

spectralnorm
Origin : pyperformance
Purpose : Test arithmetic

Author : Sebastien Loisel
Depends: None

Computes the largest singular value of an infinite matrix.

call_simple
Origin : pyperformance
Purpose : Test function calls

Author : unknown
Depends: None

Same as call_method, using functions rather than methods.

float
Origin : pyperformance
Purpose : Test float ops

Author : Factor
Depends: math

Microbenchmarks floating-point operations.

call_method
Origin : pyperformance
Purpose : Test method calls

Author : unknown
Depends: None

Microbenchmarks simple method calls; the calls do not use argu-
ment lists, keyword arguments, or tuple unpacking.

go
Origin : pyperformance
Purpose : Game

Author : unknown
Depends: math, random

Implements the game Go. This benchmark is split across three files:
a migratable module that implements the game board, a contextual
module that defines constants, and a contextual module that imple-
ments an AI and drives the benchmark.

meteor
Origin : pyperformance
Purpose : Puzzle

Author : Daniel Nanz
Depends: None

Solves the Shootout benchmarks meteor puzzle.

https://github.com/httplib2/httplib2
https://github.com/httplib2/httplib2
https://docs.python.org/3/library/urllib.html
https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier
http://www.asciitable.com/
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://docs.python.org/3/library/math.html
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/random.html
https://en.wikipedia.org/wiki/Go_(game)
https://github.com/python/performance
https://pyperformance.readthedocs.io/

3.6 37

Espionage
Origin : Synthetic
Purpose : Graph algorithm

Author : Zeina Migeed
Depends: operator

Implements Kruskal’s spanning-tree algorithm.

PythonFlow
Origin : Synthetic
Purpose : Flow algorithm

Author : Alfian Ramadhan
Depends: os

Implements the Ford-Fulkerson algorithm.

pystone
Origin : pyperformance
Purpose : Test integer ops

Author : Chris Arndt
Depends: None

Implements Weicker’s Dhrystone benchmark.

chaos
Origin : pyperformance
Purpose : Create fractals

Author : Carl Friedrich Bolz
Depends: math, random

Creates fractals using the chaos game method.

futen

Origin : Library
Purpose : SSH configuration

Author : momijiame
Depends: fnmatch, os.path, re,
shlex, socket

Converts an OpenSSH configuration file to an inventory file for the
Ansiable automation framework.

take5

Origin : Educational
Purpose : Game

Author : Maha Alkhairy and Zeina
Migeed
Depends: random, copy

Implements a card game and a simple player AI.

slowSHA
Origin : Library
Purpose : Hashing

Author : Stefano Palazzo
Depends: os

Applies the SHA-1 and SHA-512 algorithms to English words.

sample_fsm
Origin : Economics research
Purpose : Economy simulator

Author : Zeina Migeed
Depends: itertools, os, random

Adapted from the Typed Racket fsm benchmark.

aespython

Origin : Library
Purpose : Encryption

Author : Adam Newman, Demur
Remud
Depends: os, struct

Implements the Advanced Encryption Standard.

https://docs.python.org/3/library/operator.html
https://github.com/masphei/PythonFlow
https://docs.python.org/3/library/os.html
https://github.com/python/performance
https://pyperformance.readthedocs.io/
http://www.eembc.org/techlit/datasheets/ECLDhrystoneWhitePaper2.pdf
https://github.com/python/performance
https://pyperformance.readthedocs.io/
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/random.html
https://en.wikipedia.org/wiki/Chaos_game
https://github.com/momijiame/futen
http://blog.amedama.jp/
https://docs.python.org/3/library/fnmatch.html
https://docs.python.org/3/library/os.html#module-os.path
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/shlex.html
https://docs.python.org/3/library/socket.html
https://www.openssh.com/
https://www.ansible.com/
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/copy.html
http://github.com/sfstpala/SlowSHA
https://docs.python.org/3/library/os.html
https://github.com/ayaderaghul/sample-fsm
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/random.html
https://github.com/serprex/pythonaes
http://caller9.com/
https://github.com/serprex
https://github.com/serprex
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/struct.html
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

38

Benchmark N SLOC modules functions classes methods
fannkuch 1 41 1 1 - -
nqueens 2 37 1 2 - -
http2 4 86 2 1 1 2

nbody 5 101 1 5 - -
pidigits 5 33 1 5 - -
spectralnorm 5 31 1 5 - -
call_simple 6 113 1 6 - -
float 6 36 1 2 1 3

call_method 7 115 1 1 1 5

go 7 80 1 1 1 5

meteor 8 100 1 8 - -
Espionage 12 93 2 7 1 4

PythonFlow 12 112 1 - 1 11

pystone 14 177 1 11 1 2

chaos 15 190 1 - 3 12

futen 15 221 3 5 2 8

take5 16 130 3 3 2 11

slowSHA 17 210 4 4 3 10

sample_fsm 19 148 5 8 2 9

aespython 34 403 6 - 5 29

stats 79 1118 13 79 - -

Figure 14: Static summary of the migratable code in the Reticulated
benchmarks. N = number of components = functions + classes +
methods. SLOC = source lines of code as reported by David A.

Wheeler’s sloccount.

stats
Origin : Library
Purpose : Statistics

Author : Gary Strangman
Depends: copy, math

Implements first-order statistics functions; in other words, transfor-
mations on either floats or (possibly-nested) lists of floats. The origi-
nal program consists of two modules. The benchmark is modularized
according to comments in the program’s source code to reduce the
size of each module’s configuration space.

Figure 14 tabulates information about the size and structure of the
migratable portions of these benchmarks. The six columns report the
number of migratable units (N = num. functions + methods + classes),
lines of code (SLOC), number of modules, number of function defi-
nitions, number of classes, and number of method definitions. Most
benchmarks are small, with 1–3 modules and fewer than 200 lines of
code. The number of mixed-typed configurations in the experiment,

https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/
https://github.com/seperman/python-statlib/blob/master/statlib/pstat.py
https://connects.catalyst.harvard.edu/Profiles/display/Person/12467
https://docs.python.org/3/library/copy.html
https://docs.python.org/3/library/math.html

3.6 39

Benchmark retic/python typed/retic typed/python
fannkuch 1.14 1.01 1.15

nqueens 1.25 1.57 1.96

http2 3.07 1.18 3.63

nbody 1.78 1.01 1.80

pidigits 1.02 1.02 1.05

spectralnorm 2.01 3.47 6.98

call_simple 1.00 3.10 3.11

float 2.18 1.52 3.32

call_method 4.48 1.74 7.79

go 3.77 1.97 7.44

meteor 1.56 1.37 2.13

Espionage 2.87 1.79 5.14

PythonFlow 2.38 3.04 7.23

pystone 1.36 2.06 2.79

chaos 2.08 1.77 3.69

futen 1.58 1.06 1.68

take5 1.21 1.14 1.38

slowSHA 1.66 1.18 1.96

sample_fsm 2.80 2.16 6.07

aespython 3.41 1.74 5.93

stats 1.09 1.39 1.52

Figure 15: Performance ratios for three important points in a config-
uration space: fully-typed code (typed), untyped code run through
Reticulated (retic), and untyped code run via Python (python).

however, is prohibitively large. The relatively small sample_fsm de-
scribes half a million configurations. For the largest two benchmarks,
aespython and stats, exhaustive measurement is out of the question.

3.6.3 Performance Ratios

The table in figure 15 lists the endpoints of migratory typing in Retic-
ulated. From left to right, these are: the performance of the untyped
configuration relative to the Python baseline (the retic/python ratio),
the performance of the fully-typed configuration relative to the un-
typed configuration (the typed/retic ratio), and the overall delta be-
tween fully-typed and Python (the typed/python ratio).

For example, the row for futen reports a retic/python ratio of 1.58.
This means that the average time to run the untyped configuration of
the futen benchmark using Reticulated is that much slower than the
average time of running the same code using Python. The typed/retic

40

ratio for futen states that the fully-typed configuration is 1.06 times
slower than the untyped configuration.

Migrating a benchmark to Reticulated, or from untyped to fully-
typed, always adds performance overhead. This overhead is always
within one order of magnitude.

Fourteen benchmarks have retic/python ratios that are larger than
their typed/retic ratios. One would expect retic/python ratios close
to 1 because untyped Reticulated need not differ from Python. But
Reticulated duplicates some of Python’s run-time checks. For exam-
ple, Reticulated checks that a method is bound before proceeding
with method dispatch.

3.6.4 Overhead Plots

Figures 16, 17, and 18 summarize the overhead of migratory typ-
ing in the benchmark programs. Each plot reports the percent of
D-deliverable configurations (y-axis) for values of D between 1x over-
head and 10x overhead (x-axis). The heading above a plot states the
benchmark’s name and indicates whether the data is exhaustive or ap-
proximate. Exhaustive plots show the total number of configurations.
Approximate plots show the number of samples and the number of
randomly-selected configurations in each sample.

The curves for the approximate data—sample_fsm, aespython, and
stats—are intervals rather than fixed-width lines. For instance, the
height of an interval at x = 4 is the range of the 95%-10, [10(F + C)]-
approximation for the number of 4-deliverable configurations. These
intervals are thin because there is little variance in the proportion
of D-deliverable configurations across the ten samples, but the sam-
ple_fsm curve is slightly thicker than the aespython curve.

Curves in these figures typically cover a large area and reach the
top of the y-axis at a low value of D. This value is always less
than 10. In other words, every configuration in the experiment is
10-deliverable. For many benchmarks, the maximum overhead is sig-
nificantly lower. Indeed, eight benchmarks are nearly 2-deliverable.

None of the configurations in the experiment run faster than the
Python baseline. This is to be expected, given the retic/python ratios
in figure 15 and the fact that Reticulated translates type annotations
into run-time checks.

Fourteen benchmarks have relatively smooth slopes. The plots for
the other four benchmarks have wide, flat segments. These flat seg-
ments are due to functions that are frequently executed in the bench-
marks’ traces; all configurations in which one of these functions is
typed incur a significant performance overhead.

Eighteen benchmarks are roughly T-deliverable, where T is the
typed/python ratio listed in figure 15. In these benchmarks, the
fully-typed configuration is one of the slowest configurations. The

3.6 41

fannkuch

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
2 confgurations

nqueens

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
4 confgurations

http2

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

nbody

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

pidigits

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

spectralnorm

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

call_simple

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

Figure 16: Reticulated overhead plots (1/3). The x-axis ranges over
slowdown factors, the y-axis counts configurations, and a point (x, y)
shows the proportion of x-deliverable configurations.

42

foat

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

call_method

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
128 confgurations

go

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
128 confgurations

meteor

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
256 confgurations

Espionage

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
4,096 confgurations

PythonFlow

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
4,096 confgurations

pystone

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16,384 confgurations

Figure 17: Reticulated overhead plots (2/3).

3.6 43

chaos

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32,768 confgurations

futen

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32,768 confgurations

take5

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
65,536 confgurations

slowSHA

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
131,072 confgurations

sample_fsm

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 190 confgurations

aespython

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 340 confgurations

stats

111111111 222222222 10x10x10x10x10x10x10x10x10x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
10 samples of 790 confgurations

Figure 18: Reticulated overhead plots (3/3).

44

notable exception is spectralnorm, in which the fully-typed configura-
tion runs faster than 38% of all configurations. Unfortunately, this
speedup comes from a soundness bug that we discovered thanks to
this performance evaluation. Reticulated at commit e478343 does not
type-check the contents of tuples (mvitousek/reticulated #36).

3.6.5 Threats to Validity

We have identified five sources of systematic bias. Three have been
noted above: the decision to measure one set of type annotations
(chapter 3.2.3), the coarse granularity (chapter 3.6.1), and the impreci-
sion of Reticulated types (chapter 3.4.1). Here, we can offer a few de-
tails on type-expressiveness. The take5 benchmark contains one func-
tion that must stay untyped because it accepts optional arguments
(mvitousek/reticulated #32). The go benchmark uses dynamic typ-
ing because Reticulated cannot validate its use of a recursive class
definition. Two other benchmarks, pystone and stats, use dynamic
typing to overcome Reticulated’s lack of untagged union types.

A third issue is that the experiment uses rather small benchmarks.
The PyPI Ranking (pypi-ranking.info/alltime, accessed 2018) shows
that widely-used Python packages have far more functions and meth-
ods. The simplejson library contains over 50 functions and methods,
the requests library contains over 200, and the Jinja2 library con-
tains over 600.

Fourth and last, the aespython, futen, http2, and slowSHA bench-
marks read from a file within their timed computation. Despite the
unpredictable running times of system calls, we believe our results
are representative.

3.7 additional visualizations

The method presented in this chapter targets our most effective an-
swer to the question of how to evaluate the performance of a mixed-
typed language. In particular, the notion of D-deliverable configu-
rations is a clear and scalable way to summarize performance. A
mixed-typed language has other interesting properties, however, and
these call for tailored visualizations.

3.7.1 Exact Runtime Plots

The raw data behind an overhead plot is a sequence of running times
for every configuration. An overhead plot summarizes the running
times into an average, and uses these averages to group configura-
tions into buckets. Unfortunately, this method hides outliers in the
data and syntactic relations (think back to the lattice, figure 2) among
configurations.

https://github.com/mvitousek/reticulated/commit/e478343ce7c0f2bc50d897b0ad38055e8fd9487d
https://github.com/mvitousek/reticulated/issues/36
https://github.com/mvitousek/reticulated/issues/32
http://pypi-ranking.info/alltime
https://github.com/simplejson/simplejson
https://github.com/kennethreitz/requests
https://github.com/pallets/jinja/tree/master/jinja2

3.7 45

nqueens

000000000 111111111 222222222
000000000

2.52.52.52.52.52.52.52.52.5

5ms5ms5ms5ms5ms5ms5ms5ms5ms
160 points

Figure 19: Number of type annotations vs. Running time on the
Reticulated nqueens benchmark.The x-axis ranges over the number of
active typed units, the y-axis shows exact running times, and a point
(x, y) shows one running time for one configuration with x types.

Figure 19 addresses both concerns. Instead of summarizing one
configuration with its average runtime, the plot contains one point
for every running time in the dataset. These points are spread left-
to-right in one of the three columns of the figure. If a plot like this
does not consist of distinct, horizontal lines, the underlying dataset
may have irregular running times. Each column contains all config-
urations that have the same number of types. In terms of the con-
figuration lattice (figure 2), the left-most column contains the bottom
level and each successive column present a higher levels. At a glance,
figure 19 therefore shows the overall effect of adding types.

3.7.2 Relative Scatterplots

Collapsible contracts are a new representation for deep run-time type
checks [29]. The representation greatly improves some mixed-typed
programs, but can slow down others. To assess the implementation
of collapsible, we used a scatterplot technique due to Spenser Bau-
man [10]. Figure 20 shows one representative example from our work.
Each point in the scatterplot shows how collapsible affects one con-
figuration. Points above the diagonal line are improved; points below
the line get worse with collapsible contracts. More precisely, a point
(X, Y) shows the overhead in both systems. The first coordinate, X,
is the overhead with collapsible. The Y coordinate is the baseline
overhead, without collapsible. If collapsible always led to a lower
overhead, then all points would lie above the X = Y line (because
X < Y when collapsible wins).

3.7.3 Best-Path Plots

The plots in chapter 3.5 paint a bleak picture of Typed Racket. Many
benchmarks have many configurations that run far slower than the

46

morsecode

111111111 1.92x1.92x1.92x1.92x1.92x1.92x1.92x1.92x1.92x

111111111

1.92x1.92x1.92x1.92x1.92x1.92x1.92x1.92x1.92x

16 points

Figure 20: Scatterplot comparing morsecode configurations before and
after collapsible contracts. The x-axis ranges over collapsible over-
head and the y-axis ranges over baseline overhead. A point (x, y)
is a head-to-head comparison; points above the diagonal represent
configurations where collapsible is faster than the baseline.

suffxtree, suffxtree+1 type

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

sufxtree sufxtree+1 type

suffxtree, suffxtree+2 types

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

sufxtree sufxtree+2 types

Figure 21: Overhead plots for suffixtree comparing the base slowdown
to the best-possible improvement after adding types to 1 (top) and 2

(bottom) modules.

3.7 47

untyped code. A natural question, though, is whether these results
are brittle. If a programmer can escape the slow configurations by
converting one or two more modules, then the bleak conclusion may
be unwarranted.

Figure 21 presents two plots for the suffixtree benchmark that com-
pare the original data against the best-possible performance after
converting additional modules. In the top plot, a configuration is
X-deliverable in the orange curve if it can reach a X-deliverable con-
figuration from the blue curve after adding types to one module. Sim-
ilarly, the bottom plot shows the best-possible performance after typ-
ing two untyped modules.

The plots show that significant improvements are possible, but not
guaranteed even in the best case. Other large benchmarks typically
show similar patterns [46].

4
D E S I G N A N A LY S I S M E T H O D

This chapter is based on joint work with: Christos Dimoulas
and Matthias Felleisen [43, 45, 47].

Over the years, researchers have developed several languages that
mix typed and untyped code. Typed Racket and Reticulated are but
two implementations in a wide space. To a first approximation, the
designs fall into four broad strategies:

• Optional typing adds a best-effort static analysis but ignores
type annotation at runtime [12, 15].

• Transient inserts shape checks in type-checked code to guaran-
tee that operations cannot not “go wrong” due to untyped val-
ues [113, 115]. A shape check validates a top-level value con-
structor with respect to a top-level type constructor, which is
just enough for this notion of safety.

• Natural enforces types with higher-order checks and thereby en-
sures the full integrity of types [86, 103].

• Concrete requires that every value is tagged with a type and
maintains integrity with simple checks [72, 123].

In addition, though, researchers have proposed and implemented hy-
brid techniques [13, 41, 43, 82, 85]. An outstanding and unusual exem-
plar of this kind is Pyret, a language targeting the educational realm
(pyret.org).

Each of these type-enforcement strategies picks a tradeoff among
static guarantees, expressiveness, and run-time costs (chapter 4.2). If
stringent constraints on untyped code are acceptable, then concrete
offers strong and inexpensive guarantees. If the goal is to interoper-
ate with an untyped language that does not support wrapper/proxy
values, then transient may offer the strongest possible guarantees. If
performance is not an issue, then natural is the perfect choice.

Unfortunately, the literature provides little guidance to program-
mers and language designers on how to compare different seman-
tics. Standard meta-theoretical tools do not articulate what is gained
and lost in each tradeoff (chapter 4.3). The gradual guarantee [87],
for example, is trivially satisfied by any optionally-typed language.
Simply put, the field lacks an apples-to-apples way of comparing dif-
ferent type-enforcement strategies and considering their implications
for programmers.

49

https://www.pyret.org

50

Table 1: Informal sketch of the design-space analysis.
N C F T A E

type soundness 3 3 3 3 3 5

complete monitoring 3 3 5 5 5 5

blame soundness 3 3 3 5 3 3

blame completeness 3 3 5 5 3 5

error preorder N . C . F . T h A . E

This chapter introduces a framework for systematically comparing
the behavioral guarantees offered by different mixed-typed seman-
tics. Because each semantics is essentially a method of enforcing
static types, the comparison begins with a common mixed-typed syn-
tax. This surface syntax is then assigned multiple semantics, each
of which follows a distinct protocol for enforcing type specifications.
With this semantic framework, one can directly observe the possible
behaviors for a single program.

The chosen models illustrate natural (N), transient (T), optional (also
known as erasure, E), and three theoretical strategies (co-natural C, for-
getful F, and amnesic A) that demonstrate how to fill design gaps. The
comparison excludes two classes of prior work: concrete, because of
the constraints it places on untyped code (chapter 4.2.2), and mixed-
typed languages that must analyze untyped code to interoperate with
it. Our focus is on strategies that can deal with untyped code as a
“dusty deck” without needing to recompile the untyped world each
time a new type boundary appears.

Table 1 sketches the results of the evaluation (chapter 4.5). The
six letters in the top row correspond to different type-enforcement
strategies, and thus different semantics, for the common surface lan-
guage. As to be expected, Natural (N) accepts the fewest programs
without raising a run-time type mismatch, and Erasure (E) accepts the
greatest number of programs; the symbols . and h indicate these be-
havioral differences. Lower rows introduce additional properties that
underlie our comparison. Type soundness guarantees the validity of
types in typed code. Complete monitoring guarantees that the type
system moderates all boundaries between typed and untyped code—
even boundaries that arise at run-time. Blame soundness ensures
that when a run-time check goes wrong, the error message points
to boundaries that are relevant to the problem. Blame completeness
guarantees that error messages come with all relevant information.
For both blame soundness and completeness, relevance is determined
by an independent (axiomatic) specification that tracks values as they
cross boundaries between typed and untyped code (chapter 4.4.4).

In sum, the five properties enable a uniform analysis of existing
strategies and can guide the search for new strategies. Indeed, the

4.1 51

Erasure

ActionScript 3.0† Common Lisp† mypy†
? Flow†

? Hack†
?

Pyre†
? Pytype†

? RDL†
? Strongtalk† TypeScript†

?
Typed Clojure† Typed Lua†

Gradualtalk†
?

Grift? TPD†

Typed Racket†

Natural
Grace Pallene†

Reticulated†
?

Transient

C# Dart 2

Nom? SafeTS
TS∗

Concrete

StrongScript
Thorn

Pyret

† = migratory, ? = gradual

Figure 22: Landscape of mixed-typed languages

synthetic Amnesic semantics (A) demonstrates how a semantics can
fail complete monitoring but guarantee sound and complete blame.

4.1 chapter outline

Chapters 4.2 through 4.4 explain the what, why, and how of our design-
space analysis. There is a huge body of work on mixed-typed lan-
guage that desperately needs organizing principles (chapter 4.2). Past
attempts to organize fall short; by contrast, the properties that frame
table 1 offer an expressive and scalable basis for comparison (chap-
ter 4.3). These properties guide an apples-to-apples method that be-
gins with a common surface language and studies different semantics
(chapter 4.4). In particular, this chapter analyzes six semantics based
on six ideas for enforcing static types.

Chapter 4.5 presents the six semantics and the key results. Expert
readers may wish to begin there and refer back to chapter 4.4 as
needed. An appendix contains a complete formal account of our
results.

4.2 assorted behaviors by example

There are many mixed-typed languages. Figure 22 arranges a few
of their names into a rough picture of the design space. Each lan-
guage enables some kind of mix between typed and untyped code.
Languages marked with a star (?) come with a special dynamic type,
often styled as ?, or ?, that allows partially-defined types [87]. Tech-

52

nically, the type system supports implicit down-casts from the dy-
namic type to any other type—unlike, say, Object in Java. Languages
marked with a cross (†) add a tailor-made type system to an untyped
language, but may require types for an entire module at a time [107].
Other languages satisfy different goals.

For the most part, these mixed-typed languages fit into the broad
forms introduced in chapter 4. Erasure is by far the most popular
strategy; perhaps because of its uncomplicated semantics and ease
of implementation [14, 64, 81, 92]. The Natural languages come
from academic teams that are interested in types that offer strong
guarantees [5, 10, 104, 120]. Transient is gaining traction as a com-
promise between types and performance [48, 84, 115], and Concrete
has generated interest among industry teams [11, 23] as well as aca-
demics [72, 79, 95]. Nevertheless, several languages explore a hy-
brid approach. StrongScript and Thorn offer a choice of concrete
and erased types [82, 123]. Pyret uses Natural-style checks to val-
idate fixed-size data and Transient-style checks for recursive types
(e.g. lists) and higher-order types (personal communication with Ben-
jamin Lerner and Shriram Krishnamurthi). The literature presents
additional variations. Castagna and Lanvin [18] present a Natural se-
mantics that drops certain wrappers. Siek et al. [85] give a monotonic
semantics that associates types with heap positions instead of creat-
ing wrappers. There are several implementation of the monotonic
idea [7, 79, 83, 95].

Our goal is a systematic comparison of type guarantees across the
wide design space. Such a comparison is possible despite the vari-
ety because the different guarantees arise from choices about how
to enforce types at the boundaries between type-checked code and
arbitrary dynamically-typed code. To illustrate, the following three
subchapters discuss type boundary examples in the context of four
languages: Flow [20], Reticulated [115], Typed Racket [107], and
Nom [72]. Flow is a migratory typing system for JavaScript, Reticu-
lated equips Python with gradual types, Typed Racket extends Racket,
and Nom is a new gradual-from-the-start language.

4.2.1 Enforcing a Base Type

One of the simplest ways that a mixed-typed interaction can go awry
is for untyped code to send incorrect input to a typed context that
expects a flat value. The first example illustrates one such interaction:

f = λ(x:Int) x+1

f f
(1)

4.2 53

The typed function on top expects an integer. The untyped context
on the bottom imports this function f and applies f to itself; thus
the typed function receives a function rather than an integer. The
question is whether the program halts or invokes the typed function
f on a nonsensical input.

Figure 23 translates the program to four languages. Each white box
represents type-checked code and each grey box represents untyped
and, ideally, un-analyzed code that is linked in at run-time. Nom is
an exception, however, because it cannot interact with truly untyped
code (chapter 4.2.2). Despite the differences in syntax and types, each
clearly defines a typed function that expects an integer on the top and
applies the function to itself in an untyped context on the bottom.

In Flow, the program does not detect a type mismatch. The typed
function receives a function from untyped JavaScript and surprisingly
computes a string (ECMA-262 edition 10, § 12.8.3). In the other three
languages, the program halts with a boundary error message that alerts
the programmer to the mismatch between two chunks of code.

Flow does not detect the run-time type mismatch because it follows
the erasure, or optional typing, approach to type enforcement. Erasure
is hands-off; types have no effect on the behavior of a program. These
static-only types help find logical mistakes and enable type-directed
IDE tools, but disappear during compilation. Consequently, the au-
thor of a typed Erasure function cannot assume that it receives only
well-typed input.

The other languages enforce static types with some kind of dy-
namic check. For base types, the check validates the shape of incom-
ing data. The checks for other types reveal differences among these
non-trivial type enforcement strategies.

4.2.2 Validating an Untyped Data Structure

The second example is about pairs. It asks what happens when typed
code declares a pair type and receives an untyped pair:

g = λ(x:Int×Int) (fst x)+1

g ("A", 2)
(2)

The typed function on top expects a pair of integers and uses the
first element of the input pair as a number. The untyped code on the
bottom applies this function to a pair that contains a string and an
integer.

Figure 24 translates this idea into Reticulated, Typed Racket, and
Nom. The encodings in Reticulated and Typed Racket define a pair
in untyped code and impose a type in typed code. The encoding

https://www.ecma-international.org/ecma-262/#sec-addition-operator-plus

54

Flow function f(x : number): number {

 return x+1;

}

f(f); Ok

Reticulated def f(x : Int)->Int:

 return x + 1

f(f) Error

Typed Racket (: f (-> Integer Integer))

(define (f x)

 (+ x 1))

(f f) Error

Nom class F {

 constructor () {}

 fun apply(Int x) : Int {

 return x + 1;

 }

}

dyn f = new F();

f.apply((dyn)f);
Error

Figure 23: Program (1) translated to four languages

4.2 55

in Nom is different; the typed code expects an instance of one data
structure but the untyped code provides something else. This shape
mismatch leads to a run-time error.

Nom cannot express program (2) directly because the language
does not allow partially-typed values. There is no common pair con-
structor that: (1) untyped code can use without constraints and (2)
typed code can receive at a particular type. All type structure must
be specified with the data structure. On one hand, this requirement
greatly simplifies run-time validation because the outermost shape of
any value determines the shape of its elements. On the other hand,
it imposes a significant burden on the programmer. To add refined
static type checking at the use-sites of an untyped data structure, a
programmer must either add a cast to each use in typed code or edit
the untyped code for a new data definition. Because Nom and other
concrete languages require this kind of type structure in untyped
code [23, 72, 82, 123], the model in chapter 4.5 does not support them.

Both Reticulated and Typed Racket raise an error on program (2),
but for substantially different reasons. Typed Racket rejects the un-
typed pair at the boundary to the typed context because the pair does
not fully match the declared type. Reticulated accepts the value at
the boundary because it is a pair, but raises an exception at the elim-
ination form y[0] because typed code expects an integer result but
receives a string. These sample behaviors are indicative of a wider
difference; Typed Racket eagerly checks the contents of data struc-
tures while Reticulated lazily validates use-sites.

4.2.3 Uncovering the Source of a Mismatch

Figures 25 and 26 present excerpts from realistic programs that mix
typed and untyped code. These examples follow the same general
structure: an untyped client interacts with an untyped library via a
thin layer of typed code. Both programs also signal run-time errors,
but for different reasons and with different implications for the pro-
grammer.

Figure 25 consists of an untyped library, an incorrect layer of type
annotations, and an untyped client of the types. The module on top,
net/url, is a snippet from an untyped library that has been part of
Racket for two decades (github.com/racket/net). The typed mod-
ule on the middle-right defines types for part of the untyped library.
Lastly, the module at the bottom of the figure imports the typed li-
brary and calls the library function call/input-url.

Operationally, the library function flows from net/url to the typed
module and then to the client. When the client calls this function, it
sends client data to the untyped library code via the typed module.
The client application clearly relies on the type specification from
typed/net/url because the first argument is a URL structure, the sec-

https://github.com/racket/net

56

Reticulated
x = ["A", 2]

def g(y : Tuple(Int,Int)):

 return y[0] + 1

g(x)

Error

Typed Racket
(define x (list "A" 2))

(require/typed

 [x (List Integer Integer)])

(+ (first x) 1)

Error

Nom
class Pair {

 private fst;

 private snd;

 #

}

x = new Pair("A", 2)

class IntPair {

 private Int fst;

 private Int snd;

 #

}

((IntPair)x).fst + 1

Error

Figure 24: Program (2) translations

4.2 57

net/url

#lang racket

;; +600 lines of code

(define (call/input-url url c h)

 ;; connect to the url via c,

 ;; process the data via h

 )

typed/net/url

#lang typed/racket

(define-type URL)

(require/typed/provide

 ;; from this library

 net/url

 ;; import the following

 [string->url

 (-> String URL)]

 [call/input-url

 (∀ (A)
 (-> URL

 (-> String In-Port)

 (-> In-Port A)

 A))])

client

#lang racket

(require html typed/net/url)

(define URL

 (string->url "https://sr.ht"))

;; connect to url, read html

(define (main)

 (call/input-url URL (λ(str)) read-html))

Figure 25: Using Typed Racket to define an API

58

requests

2,000 lines of code

def get(url, *args, **kws):

 # Sends a GET request

typed_requests

import requests as r

def get(url:Str, to:Tuple(Float,Float)):

 return r.get(url, to)

client

from typed_requests import get

wait_times = (2, "zero")

get("https://sr.ht", wait_times)

Figure 26: Using Reticulated to define an API

4.2 59

ond is a function that accepts a string, and the third is a function that
maps an input port to an HTML representation. Unfortunately for
the client, the type declaration in figure 25 is buggy. The library ap-
plies the first callback of call/input-url to a URL struct, rather than
a string as the developer expects.

Fortunately for the developer, Typed Racket compiles types to con-
tracts and thereby catches the mismatch. Here, the compilation of
typed/net/url generates a contract for call/input-url. The gener-
ated contract ensures that the untyped client provides three type-
matching argument values and that the library applies the callback
to a string. When the net/url library eventually applies the call-
back function to a URL structure, the function contract for the call-
back halts the program. The blame message says that interface for
call/input-url broke the contract, but warns the developer on the
last line with “assuming the contract is correct.” A quick look con-
firms that the contract—that is, the type from which the contract is
derived—is wrong.

Figure 26 presents an arrangement of three Transient Reticulated
modules, similar to the code in figure 25. The module on the top
exports a function that retrieves data from a URL (adapted from the
requests library, github.com/psf/requests). This function accepts
several optional and keyword arguments. The typed adaptor module
on the right formulates types for one valid use of the function; a client
may supply a URL as a string and a timeout as a pair of floats. These
types are correct, but the client module on the bottom sends a tuple
that contains an integer and a string.

Reticulated’s runtime checks ensure that the typed function re-
ceives a string and a tuple, but do not validate the tuple’s contents.
These same arguments then pass to the untyped get function in the
requests module. When the untyped get eventually uses the string
"zero" as a float, Python raises an exception that originates from the
requests module. A completly untyped version of this program gives
the same behavior; the Reticulated types are no help for debugging.

In this example, the programmer is lucky because the call to the
typed version of get is still visible on the stack trace, providing a hint
that this call might be at fault. If Python were to properly implement
tail calls, or if the library accessed the pair some time after returning
control to the client, this hint would disappear.

In sum, types in Transient Reticulated do not monitor all chan-
nels of communication between modules. A value may cross a type
boundary without a full check, making it difficult to discover type-
value mismatches or pinpoint their source. Reticulated mitigates this
problem with a global map from heap addresses to source locations.
The analysis in chapter 4.5 demonstrates, however, that this map can
result in incorrect blame.

https://github.com/psf/requests

60

4.3 towards a formal comparison

The design of a type-enforcement strategy is a multi-faceted prob-
lem. A strategy determines many aspects of behavior: whether mis-
matches between type specifications and value flows are discovered;
whether the typed portion of the code is really statically typed, in a
conventional sense; what typed APIs mean for untyped client code;
and whether an error message can pinpoint which type specification
does not match which value. All of these decisions imply conse-
quences for the programmer and the language designer.

The examples in chapter 4.2 show that various languages choose
different points in this multi-faceted design space. But, examples can
only motivate a systematic analysis; they cannot serve as the basis
of such an endeavor. The selection of example programs and their
translation across languages require too much insight. Worse, the
examples tell us little about the broader implications of each choice;
at best they can demonstrate issues.

A systematic analysis needs a suite of formal properties that cap-
ture the consequences of design choices for the working developer
and language designer. Such properties must apply to a wide (if
not the full) spectrum of design options, articulate benefits of type
specifications to typed and untyped code alike, and come with proof
techniques that scale to complex language features.
The literature on gradual typing suggests few adequate properties.
Our analysis therefore brings new properties to the toolbox.

4.3.1 Comparative Properties in Prior Work

Type soundness is one formal property that meets the above criteria. A
type soundness theorem can be tailored to a range of type systems,
such a theorem has meaning for typed and untyped code, and the
syntactic proof technique scales to a variety of language features [122].
The use of type soundness in the gradual typing literature, how-
ever, does not promote a level comparison. Consider the four ex-
ample languages from the previous section. Chaudhuri et al. [20]
present a model of Flow and prove a conventional type soundness
theorem under the assumption that all code is statically-typed. Vi-
tousek et al. [115] prove a type soundness theorem for Reticulated
Python; a reader will eventually notice that the theorem talks about
the shape of values not their types. Muehlboeck and Tate [72] prove
a full type soundness theorem for Nom, which implements the con-
crete approach. Tobin-Hochstadt and Felleisen [103] prove a full type
soundness theorem for a prototypical Typed Racket that includes a
weak blame property. To summarize, the four advertised type sound-
ness theorems differ in several regards: one focuses on the typed half
of the language; a second proves a claim about a loose relationship

4.3 61

between values and types; a third is a truly conventional type sound-
ness theorem; and the last one incorporates a claim about the quality
of error messages.

Siek et al. [87] propose the gradual guarantee as a test to identify lan-
guages that enable smooth transitions between typed and untyped.
They and others show that the gradual guarantee holds for relatively
simple type languages and syntactic constructs; proving that it gen-
eralizes to complex type systems is the subject of active research [55,
74, 108]. The guarantee itself, however, does not tell apart the behav-
iors in chapter 4.2. Both Reticulated and Nom come with published
proofs of the gradual guarantee [72, 115]. Typed Racket states the
guarantee as an explicit design goal. Even Flow, thanks to its lack of
dynamic checks, satisfies the criteria for a smooth transition.

The KafKa framework is able to distinguish behaviors but lacks a
meta-theoretical analysis [21]. The sole theorem in the paper states
type soundness for a statically-typed evaluation language. Different
behaviors arise, however, from four translations of a mixed-typed sur-
face language into this evaluation language. One can observe the
behaviors, but the model does not characterize them.

New et al. [73] distinguish gradual typing systems via equivalence
preservation. Starting from a set of axioms for typed expressions—for
example, β and η equations—they ask whether interactions with un-
typed code can violate the axioms. Equivalence preservation does
define a spectrum; the Natural semantics preserves η for pairs and
functions, and a lazy variant (Co-Natural) fails for pairs. But, this
spectrum is rather coarse. The Transient and Erasure behaviors are
indistinguishable under equivalence preservation because both fail
to preserve the axioms. Furthermore, the type-centric nature of the
equivalences offers no direct information to the untyped side. Au-
thors of untyped code can at best deduce that the behavior of their
programs cannot be affected by certain changes in typed libraries. As
a final remark, techniques for proving that the chosen equivalences
hold are an active area of research but results so far indicate that they
require ingenuity to adapt from one linguistic setting to another.

Another well-studied property is the blame theorem [2, 85, 103, 115,
117, 118]. Despite the authoritative name, this property is not the
final word on blame. It states that a run-time mismatch may occur
only when an untyped value enters a typed, or more-precisely typed,
context; a typed value cannot trigger an error by crossing to less-
typed code. The property is a useful design principle, but does not
distinguish the various semantics in the literature. To its credit, the
blame theorem does justify the slogan “well typed programs can’t
be blamed” for a Natural semantics under the assumption that all
boundary types are correct. The slogan does not apply, however, to a
semantics such as Transient that lets a value cross a boundary without
a complete type check. Nor does it hold for incorrect types that were

62

retroactively added to an untyped program; refer to figure 25 for one
example and Dimoulas et al. [26] for further discussion.

4.3.2 Our Analysis

The primary formal property has to be type soundness, because it
tells a programmer that evaluation is well-defined in each component
of a mixed-typed programs. In addition, the canonical forms lemma
that enables a proof of type soundness also enables optimizations by
specifying exactly which values can arise in well-typed code.

The second property, complete monitoring, asks whether types guard
all statically-declared and dynamically-created channels of communi-
cation between typed and untyped code. That is, whether every in-
teraction between typed and untyped code is mediated by run-time
checks.

When a run-time check discovers a mismatch between a type spec-
ification and a flow of values and the run-time system issues an error
message, the question arises how informative the message is to a
debugging programmer. Blame soundness and blame completeness ask
whether a mixed-typed semantics can identify the responsible parties
when a run-time type mismatch occurs. Soundness asks for a subset
of the potential culprits; completeness asks for a superset.

Furthermore, the differences among type soundness theorems and
the gap between type soundness and complete monitoring suggests
the question how many errors an enforcement regime discovers. The
answer is an error preorder relation, which compares semantics in
terms of the run-time mismatches that they discover.

Individually, each property characterizes a particular aspect of a
type-enforcement semantics. Together, the properties inform us about
the nature of the multi-faceted design space that this semantics prob-
lem opens up. And in general, this work should help with the articu-
lation of consequences of design choices for the working developer.

4.4 evaluation framework

This section introduces the basic ideas of the evaluation framework;
detailed formal definitions are deferred to chapter 4.5. To formulate
different type-enforcement strategies on an equal footing, the frame-
work begins with one mixed-typed surface language (chapter 4.4.1)
and models strategies as distinct semantics (chapter 4.4.2). The prop-
erties listed above support an analysis. Type soundness (chapter 4.4.3)
and complete monitoring (chapter 4.4.4) characterize the type mis-
matches that a semantics detects. Blame soundness and blame com-
pleteness (chapter 4.4.5) measure the quality of error messages. The
error preorder (chapter 4.4.6) enables direct behavioral comparisons.

4.4 63

4.4.1 Surface Language

The surface multi-language combines two independent pieces in the
style of Matthews and Findler [65]. Statically-typed expressions con-
stitute one piece; dynamically-typed expressions are the other half.
Technically, these expression languages are identified by two judg-
ments: typed expressions e0 satisfy ` e0 : τ0 for some type τ0, and
untyped expressions e1 satisfy ` e1 : U for the dynamic type. Bound-
ary expressions connect the two languages syntactically and enable
run-time interactions.

Note that U is not the flexible dynamic type that is compatible with
any static type [86, 101], rather, it is the uni-type that describes all
well-formed untyped expressions [65]. Consequently, there is no need
for a type precision judgment in the surface language because all
mixed-typed interactions occur through boundary expressions. How
to add a dynamic type is a separate dimension that is orthogonal to
the question of how to enforce types; with or without such a type, our
results apply to the language’s type-enforcement strategy. Whether
the dynamic type is useful is a question for another time [42].

The core statically-typed (vs) and dynamically-typed (vd) values are
mirror images, and consist of integers, natural numbers, pairs, and
functions. This common set of values is the basis for typed-untyped
communication. Types τ summarize values:

vs = i | n | 〈vs, vs〉 | λ(x : τ). es

vd = i | n | 〈vd, vd〉 | λx. ed

τ = Int | Nat | τ⇒τ | τ×τ

These value sets are relatively small, but suffice to illustrate the be-
havior of gradual types for the basic ingredients of a full language.
First, the values include atomic data, finite structures, and higher-
order values. Second, the natural numbers n are a subset of the
integers i to motivate a subtyping judgment for the typed half of
the language. Subtyping helps the model distinguish between two
type-sound methods of enforcing types (declaration-site vs. use-site)
and demonstrates how the model can scale to include true union
types, which must be part of any type system for originally-untyped
code [18, 105, 107].

Surface expressions include function application, primitive opera-
tions, and boundaries. The details of the first two are fairly standard
(chapter 4.5.1), but note that function application comes with an ex-
plicit app operator (app e0 e1). Boundary expressions are the glue that
enables mixed-typed programming. A program starts with named
chunks of code, called components. Boundary expressions link these
chunks together with a static type to describe the types of values that
may cross the boundary. Suppose that a typed component named `0

imports and applies an untyped function from component `1:

64

`1

λx0. plus x0 2

Nat⇒Nat

f

`0

f 9 (3)

The surface language can model the composition of these components
with a boundary expression that embeds an untyped function in a
typed context. The boundary expression is annotated with a boundary
specification (`0JNat⇒NatJ `1) to explain that component `0 expects
a function from sender `1:

(3) = app (dyn (`0JNat⇒NatJ `1) (λx0. plus x0 2)) 9
In turn, this two-component expression may be imported into a larger
untyped component. The sketch below shows an untyped compo-
nent in the center that imports two typed components: a new typed
function on the left and the expression (3) on the right.

`3

λ(x1 : Int×Int). fst x1

(Int×Int)⇒ Int

g

`2

g x

Nat
x (3) (4)

When linearized to the surface language, this term becomes:
(4) = app (stat (`2J Int×Int⇒ IntJ `3) (λ(x1 : Int×Int). fst x1))

(stat (`2JNatJ `0) (3))
Technically, a boundary expression combines a boundary specifica-

tion b and a sender expression. The specification includes the names
of the client and sender components, in that order, along with a type
to describe values that are intended to cross the boundary. Names,
such as `0, come from some countable set `. The boundary types
guide the static type checker, but are mere suggestions unless a se-
mantics decides to enforce them:

es = . . . | dyn b ed
ed = . . . | stat b es

b = (`J τJ `)

` = countable set of names
The typing judgments for typed and untyped expressions require

a mutual dependence to handle boundary expressions. A well-typed
expression may include any well-formed untyped code. Conversely,
a well-formed untyped expression may include any typed expression
that matches the specified annotation:

Γ ` e : τ

Γ0 ` e0 : U
Γ0 ` dyn (`0J τ0J `1) e0 : τ0

Γ ` e : U
Γ0 ` e0 : τ0

Γ0 ` stat (`0J τ0J `1) e0 : U

Each surface-language component must have a name, drawn from
a set ` of labels. These names must be coherent according to a judg-
ment that validates an expression relative to a current name and a
mapping from variables to names (L ; ` e, chapter 4.5.1). All bound-
ary specifications must have a client name that matches the current

4.4 65

name, and variables bound in one component cannot appear free in
a different one.

The purpose of the names is to enable a notion of ownership, or
responsibility. As an expression reduces to a value, ownership deter-
mines which components are responsible for the current expression
and all subexpressions. Since component names appear in the sur-
face syntax, they can help explain a run-time mismatch in terms of
source-code boundaries. Suppose a program halts due to a mismatch
between a type and a value. If one component is responsible for the
value and the language can find both the client with the type expecta-
tion and source of the incompatible value, then a programmer knows
exactly where to start debugging.

4.4.2 Semantic Framework

The surface language enables the construction of mixed-typed expres-
sions. The next step is to assign behaviors to these programs via
formal semantics that differ only in the way they enforce boundary
types.

The first ingredient of a semantics is the set of result values v that
expressions may reduce to. A result set typically extends the core
typed and untyped values mentioned above (v ⊇ vs ∪ vd). Potential
reasons for the extended value set include the following:

1. to permit untyped values in typed code, and vice versa;

2. to track the identity of values on a heap;

3. to associate a value with a delayed type-check; and

4. to record the boundaries that a value has previously crossed.

Reasons 3 and 4 introduce two kinds of wrapper value. A guard
wrapper, written G b v, associates a boundary specification with a
value to achieve delayed type checks. A trace wrapper, written T b v,
attaches a list of boundaries to a value as metadata. Guards are simi-
lar to boundary expressions; they separate a context component from
a value component. Trace wrappers simply annotate values.

Note that a language with the dynamic type will need a third wrap-
per for basic values that have been assigned type dynamic. We con-
jecture that this wrapper is the only change needed to transfer our
positive results. Our negative results do not require changes for the
dynamic type because such a language can express all our “precisely-
typed” counterexample terms.

Second, a semantics must give reduction rules for boundary expres-
sions. These rules initiate a type-enforcement strategy. For example,
the Natural semantics (chapter 4.5.5) enforces full types via classic
techniques [33, 65]. It admits the following two reductions. Note

66

a filled triangle (I) describes a step in untyped code and an open
triangle (B) is for statically-typed code:

a – stat (`0JNatJ `1) 42 I
N

42

b – dyn (`0J (Int⇒Nat)J `1) (λx0.−8) B
N

G (`0J (Int⇒Nat)J `1) (λx0.−8)

The first rule lets a typed number enter an untyped context. The sec-
ond rule gives typed code access to an untyped function through a
newly-created guard wrapper. Guard wrappers are a higher-order tool
for enforcing higher-order types. As such, wrappers require elimi-
nation rules. The Natural semantics includes the following rule to
unfold the application of a typed, guarded function into two bound-
aries:

c – app (G (`0J (Int⇒Nat)J `1) (λx0.−8)) 1 B
N

dyn (`0JNatJ `1) (app (λx0.−8) (stat (`1J IntJ `0) 1))

Other semantics have different behavior at boundaries and different
supporting rules. The Transient semantics (chapter 4.5.8) takes a first-
order approach to boundaries. Instead of using wrappers, it checks
shapes at a boundary and guards elimination forms with shape-check
expressions. For example, the following simplified reduction demon-
strates a successful check:

d – check{(Nat×Nat)} 〈−1,−2〉 IB
T
〈−1,−2〉

The triangle is filled gray (IB) because Transient is defined via one
notion of reduction that handles both typed and untyped code.

These two points, values and checking rules, are the distinctive
aspects of a semantics. Other ingredients can be shared: errors, eval-
uation contexts, and interpretation of primitive operations. Indeed,
chapter 4.5.2 defines three evaluation languages—higher-order, first-
order, and erasure—that abstract over the common ingredients.

4.4.3 Type Soundness

Type soundness asks whether evaluation is well-defined, and whether
a surface-language type predicts aspects of the result. Since there are
two kinds of surface expression, soundness has two parts: one for
statically-typed code and one for dynamically-typed code.

For typed code, the question is whether code can trust the types
of its subexpressions. If an expression with static type τ0 reduces to
a value, the question is what (if anything) the type τ0 predicts about
that value. There are a range of possible answers. At one end, the
result value may match the full type τ0 according to an evaluation-
language typing judgment. The other extreme is that the result is
a well-formed value of indeterminate shape. In both cases, the pro-
grammer knows that typed code cannot reach an undefined state dur-
ing evaluation.

4.4 67

For untyped code, there is one surface type. If an expression re-
duces to a value, then uni-type soundness can only guarantee that
the result is a well-formed value of indeterminate shape. The prac-
tical benefit of such a theorem is that untyped code cannot reach an
undefined state through mixed-typed interactions.

Both parts combine into the following rough definition, where the
function F and judgment `X are parameters. The function maps sur-
face types to observations that one can make about a result; varying
the choice of F offers a spectrum of soundness for typed code. The
judgment `X matches a value with a description.

definition sketch (f -type soundness)
If e0 has static type τ0 (` e0 : τ0),
then one of the following holds:

• e0 reduces to a value v0

and `X v0 : F(τ0)

• e0 reduces to an allowed error

• e0 reduces endlessly.

If e0 is untyped (` e0 : U),
then one of the following holds:

• e0 reduces to a value v0

and `X v0 : U

• e0 reduces to an allowed error

• e0 reduces endlessly.

4.4.4 Complete Monitoring

Complete monitoring tests whether a mixed-typed semantics has con-
trol over every interaction between typed and untyped code. If the
property holds, then a programmer can rely on the language to run
checks at the proper points, for example, between the library and
client demonstrated in figure 25. Concretely, if a value passes through
the type (Int⇒ Int) then complete monitoring guarantees that the lan-
guage has control over every input to the function and every result
that the function computes, regardless of whether these interactions
occur in a typed or untyped context.

Because all such interactions originate at the boundaries between
typed and untyped code, a simplistic way to formalize complete mon-
itoring is to ask whether each boundary comes with a full run-time
check when possible and an error otherwise. A language that meets
this strict requirement certainly has full control. However, other good
designs fail. Suppose typed code expects a pair of integers and a
semantics initially admits any pair at the boundary but eventually
checks that the pair contains integers. Despite the incomplete check
at the boundary, this delayed-checking semantics eventually performs
all necessary checks and should satisfy a complete monitoring theo-
rem. Higher-order values raise a similar question because a single
run-time check cannot prove that a function value always behaves
a certain way. Nevertheless, a language that checks every call and
return is in full control of the function’s interactions.

68

Our definition of complete monitoring translates these ideas about
interactions and control into statements about ownership labels [24]. At
the start of an evaluation, no interactions have occurred yet and every
expression has one owner: the enclosing component. The reduction
of a boundary term is the semantics of an interaction in which a
value flows from one sender component to a client. At this point, the
sender loses full control over the value. If the value fully matches the
type expectations of the client, then the loss of control is no problem
and the client gains full ownership. Otherwise, the sender and client
may have to assume joint ownership of the value, depending on the
nature of the reduction relation. If a semantics can create a value
with multiple owners, then it admits that a component may lose full
control over its interactions with other components.

Technically, an ownership label `0 names one source-code compo-
nent. Expressions and values come with at least one ownership label;

for example, (42)`0 is an integer with one owner and (((42)`0)
`1
)
`2

is an integer with three owners, written ((42))`0`1`2 for short. A com-
plete monitoring theorem requires two ingredients that manage these
labels. First, a reduction relation →∗

r
must propagate ownership la-

bels to reflect interactions and checks. Second, a single-ownership
judgment must test whether every value in an expression has a
unique owner. To satisfy complete monitoring, reduction must pre-
serve single-ownership.

The key single-ownership rules deal with labeled expressions and
boundary terms:

L ; ` e

L0; `0 e0

L0; `0 (e0)
`0

L0; `1 e0

L0; `0 dyn (`0J τ0J `1) e0

Values such as ((42))`0`1 represent a communication that slipped past
the run-time checking protocol, and therefore fail to satisfy single
ownership. Sneak Preview: One way that a semantics can transfer a
higher-order value without creating a joint-ownership is by providing
controlled access through a wrapper. The client owns the wrapper,
and the sender retains ownership of the enclosed value.

definition sketch (complete monitoring)
For all e0, any reduction e0 →∗r e1 implies e1.

The definition of complete monitoring is deceptively simple be-
cause it assumes a reduction relation that correctly propagates labels.
In practice, a language comes with an unlabeled reduction relation,
and it is up to a researcher to design a lifted relation that handles
labeled terms. Lifting requires insight to correctly transfer labels and
to ensure that labels do not change the behavior of programs. If la-
bels do not transfer correctly, then a complete monitoring theorem

4.4 69

becomes meaningless. And if the lifted relation depends on labels to
compute a result, then a complete monitoring theorem says nothing
about the original reduction relation.

How to lift a reduction relation

The models in chapter 4.5 present six reduction relations for a mixed-
typed language. Each relation needs a lifted version to support an
attempt at a complete monitoring proof. These lifted reduction rela-
tions are deferred to an appendix, but come about semi-automatically
through the following informal guidelines, or natural (scientific) laws,
for proper labeling.

Each law describes a way that labels may be transferred or dropped
during evaluation. To convey the general idea, each law also comes
with a brief illustration, namely, an example reduction and a short
comment. The example reductions use a hypothetical r relation over
the surface language. Recall that stat and dyn are boundary terms;
they link two components, a context and an enclosed expression, via
a type. When reading an example, accept the transitions e r e as
axioms and focus on how the labels change in response.

1. If a base value reaches a boundary with a matching base type,
then the value must drop its current labels as it crosses the
boundary.

(stat (`0JNatJ `1) ((0))
`2`1)

`0
r (0)`0

The value 0 fully matches the type Nat.

2. Any other value that crosses a boundary must acquire the label
of the new context.

(stat (`0JNatJ `1) (〈−2, 1〉)`1)
`0

r ((〈−2, 1〉))`1`0

The pair 〈−2, 1〉 does not match the type Nat.

3. Every value that flows out of a value v0 acquires the labels of v0

and the context.

(snd ((〈(1)`0 , (2)`1〉))
`2`3

)
`4

r ((2))`1`2`3`4

The value 2 flows out of the pair 〈1, 2〉.

4. Every value that flows into a function v0 acquires the label of
the context and the reversed labels of v0.

(app ((λx0. fst x0))
`0`1 (〈8, 6〉)`2)

`3
r

(((fst ((〈8, 6〉))`2`3`1`0))
`0`1

)
`3

The argument value 〈8, 6〉 is input to the function.

The substituted body flows out of the function, and

by law 3 acquires the function’s labels.

70

5. A primitive operation (δ) may remove labels on incoming base
values.

(plus (2)`0 (3)`1)
`2

r (5)`2

Assuming δ(plus, 2, 3) = 5.

6. Consecutive equal labels may be dropped.

((0))`0`0`1`0 = ((0))`0`1`0

7. Labels on an error term may be dropped.

(dyn (`0J IntJ `1) (plus 9 (DivErr)`1))
`0

r DivErr

Note: law 4 talks about functions, but generalizes to reference cells
and other values that accept input.

To show how these laws generate a lifted reduction relation, the fol-
lowing rules lift the examples from chapter 4.4.2. Each rule accepts
input with any sequence of labels (`), pattern-matches the important
ones, and shuffles via the guidelines. The first rule (a’) demonstrates
a base-type boundary (law 1). The second (b’) demonstrates a higher-
order boundary (law 2); the new guard on the right-hand side im-
plicitly inherits the context label. The third rule (c’) sends an input
(law 4) and creates new application and boundary expressions. The
fourth rule (d’) applies law 3 for an output.

a’ – (stat (`0JNatJ `1) ((42))`2)
`3
I
N

(42)`3

b’ – (dyn (`0J (Int⇒Nat)J `1) ((λx0. ((−8))`2))
`3
)
`4

B
N

(G (`0J (Int⇒Nat)J `1) ((λx0. ((−8))`2))
`3
)
`4

c’ – (app ((G (`0J (Int⇒Nat)J `1) (v0)
`2))

`3
((1))`4)

`5

B
N

(dyn (`0JNatJ `1) (app v0 (stat (`1J IntJ `0) ((1))
`4`5rev (`3)))

`2
)
`5

d’ – (check{(Nat×Nat)} ((〈((−1))`0 , ((−2))`1〉))
`2
)
`3

IB
T

((〈((−1))`0 , ((−2))`1〉))
`2`3

Although the design of a lifted reduction relation is a challenge
for every language, the laws in this section bring across the intuition
behind prior formalizations of complete monitoring [24, 25, 71, 97]
and should help guide future work.

4.4.5 Blame Soundness, Blame Completeness

Blame soundness and blame completeness ask whether a semantics
can identify the responsible parties in the event of a run-time mis-
match. A type mismatch occurs when a typed context receives an un-
expected value. The value may be the result of a boundary expression

4.4 71

or an elimination form, and the underlying issue may lie with either
the value, the current type expectation, or some prior communication.
In any event, a programmer needs to know which components pre-
viously handled the value to begin debugging. A semantics offers
information by blaming a set of boundaries (b∗); the meta-question is
whether those boundaries have any connection to the value at hand.

Suppose that a reduction halts on the value v0 and blames the set
b∗0 of boundaries. Ideally, the names in these boundaries should list
exactly the components that have handled this value. Ownership
labels let us state the question precisely. The lifted variant of the same
reduction provides an independent specification of the responsible
components; namely, the owners that get attached to v0 as it crosses
boundaries. Relative to this source-of-truth, blame soundness asks
whether the names in b∗0 are a subset of the true owners. Blame
completeness asks for a superset of the true owners.

A semantics can trivially satisfy blame soundness alone by report-
ing an empty set of boundaries. Conversely, the trivial way to achieve
blame completeness is to blame every boundary for every possible
mismatch. The real challenge is to satisfy both or implement a prag-
matic tradeoff.

definition sketch (blame soundness)
For all reductions that end in a mismatch for value v0 blaming boundaries
b∗0 , the names in b∗0 are a subset of the labels on v0.

definition sketch (blame completeness)
For all reductions that end in a mismatch for value v0 blaming boundaries
b∗0 , the names in b∗0 are a superset of the labels on v0.

The propagation laws above (chapter 4.4.4) specify one way to man-
age ownership labels. But other ground-truth strategies are possible,
and may provide insights about semantics that fail to be blame-sound
and blame-complete with the standard labeling. As a case in point,
the Transient semantics (chapter 4.5.8) uses heap addresses to allow
mixed-typed interaction without wrapper expressions. The evalua-
tion of a function, for example, draws a fresh heap address p0 and
stores the function on a value heap (H).

(λx0. x0); H0; B0 IBT p0; ({p0 7→ (λx0. x0)} ∪H0); ({p0 7→ ∅} ∪ B0)

where p0 fresh in H0 and B0

When the pointer p0 crosses a boundary, the semantics records the
crossing on a blame heap (B). The blame heap provides a set of
boundaries if a type mismatch occurs, but this set is typically un-
sound because it conflates different pointers to the same value. Prop-
agating labels onto the heap, however, enables a conjecture that Tran-
sient blames only boundaries that are relevant to the address of the
incompatible value.

72

Surface stx.
section 4.5.1

(` e : τ)

Evaluation stx.
section 4.5.2

Higher Ord. (`1 e : τ)
section 4.5.2

Flat (`s e : s)
section 4.5.2

Erased (`0 e : U)
section 4.5.2

(B,I)
sec. 4.5.4

Semantics

N (B
N

,I
N

)
section 4.5.5

C (B
C

,I
C

)
section 4.5.6

F (B
F

,I
F

)
section 4.5.7

T (IB
T

)
section 4.5.8

A (B
A

,I
A

)
section 4.5.9

E (IB
E

)
section 4.5.10

Figure 27: Map of basic definitions in chapter 4.5

4.4.6 Error Preorder

Whereas the preceding properties characterize the semantics indepen-
dently of each other, an error preorder relation allows direct compar-
isons. Strategies that perform many eager run-time checks have a
lower position in the order.

One semantics lies below another in this preorder, written X . Y,
if it raises errors on at least as many well-formed input expressions.
Put another way, X . Y if and only if the latter reduces at least as
many expressions to a result value. Note that semantics do not need
to raise the same error when they both agree that a program is faulty.
When two semantics agree about which expressions raise run-time
errors, the notation X h Y shows that they lie below one another.

definition sketch (error preorder .)
X . Y iff {e0 | ∃ v0. e0 →∗X v0} ⊆ {e1 | ∃ v1. e1 →∗Y v1}.

definition sketch (error equivalence h)
X h Y iff X . Y and Y . X.

4.5 technical development

This section presents the main technical details of our analysis: the
model, the six semantics, and the properties that each semantics sat-
isfies. Because this is a long and intricate section, figure 27 gives
an outline. The discussion begins with one surface syntax (chap-

4.5 73

ter 4.5.1) and proceeds with three target languages that can run sur-
face programs (chapter 4.5.2). Each target comes with a target type
system; type soundness relates surface types to target types. Chap-
ter 4.5.4 presents notions of reduction that are shared among several
languages. The final sections state the six base semantics and assess
their formal properties.

Several properties depend on a lifted semantics that propagates
ownership labels in accordance with the guidelines from chapter 4.4.4.
This means that the map in figure 27 is only half of the formal de-
velopment; each syntax and semantics has a parallel, lifted version.
Chapter 4.5.1 presents the lifted surface syntax, but other sections
give only the most important details regarding ownership. Full defi-
nitions appear in the appendix.

4.5.1 Surface Syntax, Types, and Ownership

Figure 28 presents the syntax and typing judgments for the common
syntax sketched in chapter 4.4.1. Expressions e include variables, inte-
gers, pairs, functions, primitive operations, applications, and bound-
ary expressions. The primitive operations consist of pair projections
and arithmetic functions, to model interactions with a runtime sys-
tem. A dyn boundary expression embeds a dynamically-typed expres-
sion into a statically-typed context, and a stat boundary expression
embeds a typed expression in an untyped context.

A type specification τ/U is either a static type τ or the symbol U
for untyped code. Fine-grained mixtures of τ and U, such as Int×U,
are not permitted; the model describes two parallel syntaxes that are
connected through boundary expressions (chapter 4.4.1). A statically-
typed expression e0 is one where the judgment Γ0 ` e0 : τ0 holds for
some type environment and type. This judgment depends on a stan-
dard notion of subtyping (6:) that is based on the relation Nat 6: Int,
is covariant for pairs and function codomains, and is contravariant for
function domains. The metafunction ∆ determines the output type of
a primitive operation. For example the sum of two natural numbers
is a natural (∆(plus, Nat, Nat) = Nat) but the sum of two integers re-
turns an integer. A dynamically-typed expression e1 is one for which
Γ1 ` e1 : U holds for some environment.

Every function application and operator application comes with a
type specification τ/U for the expected result. These annotations serve
two purposes: to determine the behavior of the Transient and Am-
nesic semantics, and to tell apart statically-typed and dynamically-
typed redexes. An implementation could easily infer valid annota-
tions from well-typed subexpressions. The model keeps them explicit
to easily formulate examples where subtyping affects behavior; for in-
stance, the source-language terms unop{Nat} e0 and unop{Int} e0 may
lead to different run-time checks.

74

Surface Language

e = x | i | n | 〈e, e〉 | λx. e |
λ(x : τ). e |
app{τ/U} e e |
unop{τ/U} e |
binop{τ/U} e e |
dyn b e | stat b e

τ = Int | Nat | τ⇒τ | τ×τ
τ/U = τ | U

b = (`J τJ `)

b∗ = P (b)
` = countable set of names
` = sequences of names
Γ = · | (x : τ/U), Γ
i = Z

n = N

unop = fst | snd

binop = plus | quotient

Γ ` e : τ (selected rules)

(x0 : τ0) ∈ Γ0

Γ0 ` x0 : τ0

(x0 : τ0), Γ0 ` e0 : τ1

Γ0 ` λ(x0 : τ0). e0 : τ0⇒τ1

Γ0 ` e0 : τ1

∆(unop, τ1) 6: τ0

Γ0 ` unop{τ0} e0 : τ0

Γ0 ` e0 : τ1⇒τ2 Γ0 ` e1 : τ1

τ2 6: τ0

Γ0 ` app{τ0} e0 e1 : τ0

Γ0 ` e0 : U
Γ0 ` dyn (`0J τ0J `1) e0 : τ0

Γ ` e : U (selected rules)

(x0 : U) ∈ Γ0

Γ0 ` x0 : U
(x0 : U), Γ0 ` e0 : U

Γ0 ` λx0. e0 : U

Γ0 ` e0 : τ0

Γ0 ` stat (`0J τ0J `1) e0 : U

Figure 28: Surface syntax and typing rules

4.5 75

Ownership Syntax

e = x | i | n | 〈e, e〉 | λx. e | λ(x : τ). e | app{τ/U} e e | unop{τ/U} e |
binop{τ/U} e e | dyn b (e)` | stat b (e)` | (e)`

` = countable set
L = · | (x : `), L

e : τ/U wf

(e0)
`0 : τ0 wf

if `0 (e0)
`0 and · ` e0 : τ0

(e0)
`0 : U wf

if `0 (e0)
`0 and · ` e0 : U

L ; ` e

(x0 : `0) ∈ L0

L0; `0 x0 L0; `0 i0

(x0 : `0), L0; `0 e0

L0; `0 λx0. e0

(x0 : `0), L0; `0 e0

L0; `0 λ(x0 : τ0). e0

L0; `0 e0 L0; `0 e1

L0; `0 〈e0, e1〉

L0; `0 e0

L0; `0 unop{τ/U} e0

L0; `0 e0 L0; `0 e1

L0; `0 binop{τ/U} e0 e1

L0; `0 e0 L0; `0 e1

L0; `0 app{τ/U} e0 e1

L0; `1 e0

L0; `0 dyn (`0J τ0J `1) e0

L0; `1 e0

L0; `0 stat (`0J τ0J `1) e0

L0; `0 e0

L0; `0 (e0)
`0

Figure 29: Ownership syntax and single-owner consistency

76

Figure 29 extends the surface syntax with ownership labels and in-
troduces a single-owner ownership consistency relation. These labels
record the component from which an expression originates. The ex-
tended syntax brings one addition, labeled expressions (e)`, and a
requirement that boundary expressions label their inner component.
The single-owner consistency judgment (L ; ` e) ensures that ev-
ery subterm of an expression has a unique owner. This judgment
is parameterized by a mapping from variables to labels (L) and a
context label (`). Every variable reference must occur in a context
that matches the variable’s map entry, every labeled expression must
match the context, and every boundary expressions must have a client
name that matches the context label. For example, the expression

(dyn (`0JNatJ `1) (x0)
`1)

`0
is consistent under a mapping that con-

tains (x0 : `1) and the `0 context label. The expression ((42)`0)
`1

,
also written ((42))`0`1 (figure 31), is inconsistent for any parameters.

Labels correspond to component names but come from a distinct
set. Thus the expression (dyn (`0JNatJ `1) (x0)

`1) contains two names,
`0 and `1, and one label `1 that matches the inner component name.
The distinction separates an implementation from a specification. A
semantics, or implementation, manipulates component names to ex-
plain errors. Labels serve as a specification to assess whether a se-
mantics uses component names in a sensible way. If the two could
mix, then the specification would be a biased measure.

Lastly, a surface expression is well-formed (e : τ/U wf) if it satis-
fies a typing judgment—either static or dynamic—and single-owner
consistency under some labeling and context label `0. The theorems
below all require well-formed expressions.

4.5.2 Three Evaluation Syntaxes

Each semantics requires a unique evaluation syntax, but overlaps
among these six languages motivate three common definitions. A
higher-order evaluation syntax supports type-enforcement strategies
that require wrappers. A flat syntax, with simple checks rather than
wrappers, supports Transient. And an erased syntax supports the com-
pilation of typed and untyped code to a common untyped host.

Figure 30 defines common aspects of the evaluation syntaxs. These
include errors Err, shapes (or, constructors) s, evaluation contexts, and
evaluation metafunctions.

A program evaluation may signal four kinds of errors:

1. A dynamic tag error (TagErr) occurs when an untyped redex
applies an elimination form to a mis-shaped input. For example,
the first projection of an integer signals a tag error.

2. An invariant error (InvariantErr) occurs when the shape of a
typed redex contradicts static typing; a “tag error” in typed

4.5 77

Evaluation Language extends Surface Language

Err = TagErr | InvariantErr | DivErr | BndryErr (b∗, v)
e = . . . | Err

s = Int | Nat | Pair | Fun

E = [] | app{τ/U} E e | app{τ/U} v E | 〈E, e〉 | 〈v, E〉 | unop{τ/U}E |
binop{τ/U} E v | binop{τ/U} v E | dyn b E | stat b E

bτ0c =

Nat if τ0 = Nat

Int if τ0 = Int

Pair if τ0 ∈ τ×τ

Fun if τ0 ∈ τ⇒τ

shape-match (s0, v0) =

True

if s0 = Nat and v0 ∈ n
or s0 = Int and v0 ∈ i
or s0 = Pair and

v0 ∈ 〈v, v〉 ∪
(G (`J (τ×τ)J `) v)

or s0 = Fun and
v0 ∈ (λx. e) ∪ (λ(x : τ). e) ∪

(G (`J (τ⇒τ)J `) v)
shape-match (s0, v1)

if v0 = T b∗0 v1

False

otherwise

δ(unop, 〈v0, v1〉) =
{

v0 if unop = fst{τ/U}
v1 if unop = snd{τ/U}

δ(binop, i0, i1) =

i0 + i1
if binop = plus{τ/U}

DivErr

if binop = quotient{τ/U}
and i1 = 0

bi0/i1c
if binop = quotient{τ/U}
and i1 6= 0

Figure 30: Common evaluation syntax and metafunctions

78

rev (b∗0) = {(`1J τ0J `0) | (`0J τ0J `1) ∈ b∗0}

senders (b∗0) = {`1 | (`0J τ0J `1) ∈ b∗0}

rev (`0 · · · `n) = `n · · · `0

owners (v0) =

{`0} ∪ owners (v1) if v0 = (v1)

`0

owners (v1) if v0 = T b∗0 v1

{} otherwise

((e0))
`n···`1 = e1 ⇐⇒ e1 = (· · · (e0)

`n · · ·)
`1

Figure 31: Metafunctions for boundaries and labels

code is one way to reach an invariant error. One goal of type
soundness is to eliminate such contradictions.

3. A division-by-zero error (DivErr) may be raised by an applica-
tion of the quotient primitive; a full language will contain many
similar primitive errors.

4. A boundary error (BndryErr (b∗, v)) reports a mismatch between
two components. One component, the sender, provided the en-
closed value. A second component rejected the value. The set
of witness boundaries suggests potential sources for the fault;
intuitively, this set should include the client–sender boundary.
The error BndryErr ({(`0J τ0J `1)}, v0), for example, says that a
mismatch between value v0 and type τ0 prevented the value
sent by the `1 component from entering the `0 component.

The four shapes, s, correspond both to type constructors and to
value constructors. Half of the correpondence is defined by the b·c
metafunction, which maps a type to a shape. The shape-match meta-
function is the other half; it checks the top-level shape of a value.

Both metafunctions use an · ∈ · judgment, which holds if a value
is a member of a set. The claim v0 ∈ n, for example, holds when the
value v0 is a member of the set of natural numbers. By convention,
a variable without a subscript typically refers to a set and a term
containing a set describes a comprehension. The term (λx. v), for
instance, describes the set {(λxi. vj) | xi ∈ x ∧ vj ∈ v} of all functions
that return some value.

The shape-match metafunction also makes reference to two value
constructors unique to the higher-order evaluation syntax: guard
(G b v) and trace (T b∗ v) wrappers. A guard has a shape determined
by the type in its boundary. A trace is metadata, so shape-match looks

4.5 79

Higher-Order Evaluation Syntax extends Evaluation Language

e = . . . | trace b∗ e
v = i | n | 〈v, v〉 | λx. e | λ(x : τ). e | G b v | T b∗ v

Γ `1 e : τ (selected rules), extends Γ ` e : τ

Γ0 `1 v0 : U
Γ0 `1 G (`0J τ0J `1) v0 : τ0 Γ0 `1 Err : τ0

Γ `1 e : U (selected rules), extends Γ ` e : U

Γ0 `1 v0 : τ0

Γ0 `1 G (`0J τ0J `1) v0 : U
Γ0 `1 v0 : U

Γ0 `1 T b∗0 v0 : U Γ0 `1 Err : U

L ; ` e (selected rules), extends L ; ` e

L0; `1 v0

L0; `0 G (`0J τ0J `1) v0

L0; `0 v0

L0; `0 T b∗0 v0

Figure 32: Higher-Order syntax, typing rules, and ownership consis-
tency

past it. Chapter 4.4.2 informally justifies the design, and figure 32

formally introduces these wrapper values.
The final components of figure 30 are the δ metafunctions. These

provide a standard, partial specification of the primitive operations.
Figure 31 lists extra metafunctions for boundaries and ownership

labels. For boundaries, rev flips every client and sender name in a
set of specifications. Both Transient and Amnesic reverse boundaries
at function calls. If a function f crosses one set b∗0 of boundaries,
then an input to f crosses the reversed boundaries rev (b∗0) before
entering the function. The senders metafunction extracts the sender
names from the right-hand side of every boundary specification in
a set. For labels, rev reverses a sequence. The owners metafunction
collects the labels around an unlabeled value stripped of any trace-
wrapper metadata. Guard wrappers are not stripped because they
represent boundaries. Lastly, the abbreviation ((·))· captures a list of

boundaries. The term ((4))`0`1 is short for ((4)`0)
`1

and ((5))`0 matches
5 with `0 bound to the empty list.

Higher-Order Syntax, Path-Based Ownership Consistency

The higher-order evaluation syntax (figure 32) introduces the two
wrapper values described in chapter 4.4.2. A guard (G (`J τJ `) v)

80

represents a boundary between two components. A trace wrapper
(T b∗ v) attaches metadata to a value.

Type-enforcement strategies typically use guard wrappers to con-
strain the behavior of a value. For example, the upcoming Co-Natural
semantics wraps any pair that crosses a boundary with a guard; this
wrapper validates the elements of the pair upon future projections.
Trace wrappers do not constrain behavior. A traced value simply
comes with extra information; namely, a collection of the boundaries
that the value has previously crossed.

The higher-order typing judgments, Γ `1 e : τ/U, extend the sur-
face typing judgments with rules for wrappers and errors. Guard
wrappers may appear in both typed and untyped code; the rules in
each case mirror those for boundary expressions. Trace wrappers
may only appear in untyped code; this restriction simplifies the Am-
nesic semantics (figure 41). A traced expression is well-formed iff the
enclosed value is well-formed. An error term is well-typed in any
context.

Figure 32 also extends the single-owner consistency judgment to
handle wrapped values. For a guard wrapper, the outer client name
must match the context and the enclosed value must be single-owner
consistent with the inner sender name. For a trace wrapper, the inner
value must be single-owner consistent relative to the context label.

Flat Syntax

The flat syntax (figure 33) supports wrapper-free gradual typing. A
new expression form, (check{τ/U} e p), represents a shape check. The
intended meaning is that the given type must match the value of the
enclosed expression. If not, then the location p may be the source
of the fault. Locations are names for the pairs and functions in a
program. These names map to pre-values in a heap (H) and, more
importantly, to sets of boundaries in a blame map (B). Pairs and
functions are second-class pre-values (w) that must be allocated be-
fore they may be used.

Three meta-functions define heap operations: ·(·), ·[· 7→ ·], and
·[· ∪ ·]. The first gets an item from a finite map, the second replaces a
blame heap entry, and the third extends a blame heap entry. Because
maps are sets, set union suffices to add new entries.

The flat typing judgments check the top-level shape (s) of an ex-
pression and the well-formedness of any subexpressions. These judg-
ments rely on a store typing (T) to describe heap-allocated values.
These types must be consistent with the actual values on the heap,
a standard technical device that is spelled out in the appendix. Un-
typed functions may appear in a typed context and vice-versa; there
are no wrappers to enforce a separation. Shape-check expressions are
valid in typed and untyped contexts.

4.5 81

First-Order Evaluation Syntax extends Evaluation Language

e = . . . | p | check{τ/U} e p

v = i | n | p

w = λx. e | λ(x : τ). e | 〈v, v〉
p = countable set of heap locations

H = P ((p 7→ w))

B = P ((p 7→ b∗))
T = · | (p : s), T

H0(v0) =

{
w0 if v0 ∈ p and (v0 7→ w0) ∈ H0

v0 if v0 6∈ p

B0(v0) =

{
b∗0 if v0 ∈ p and (v0 7→ b∗0) ∈ B0

∅ otherwise

B0[v0 7→ b∗0] =

{v0 7→ b∗0} ∪ (B0 \ (v0 7→ b∗1))

if v0 ∈ p and (v0 7→ b∗1) ∈ B0

B0 otherwise

B0[v0 ∪ b∗0] = B0[v0 7→ b∗0 ∪ B0(v0)]

T ; Γ `s e : s (selected rules)

(p0 : s0) ∈ T0

T0; Γ0 `s p0 : s0

(x0 : τ0) ∈ Γ0

T0; Γ0 `s x0 : bτ0c
T0; (x0 : U), Γ0 `s e0 : U

T0; Γ0 `s λx0. e0 : Fun

T0; (x0 : τ0), Γ0 `s e0 : s0

T0; Γ0 `s λ(x0 : τ0). e0 : Fun

T0; Γ0 `s e0 : Fun T0; Γ0 `s e1 : s0

T0; Γ0 `s app{τ0} e0 e1 : bτ0c

T0; Γ0 `s e0 : Pair

T0; Γ0 `s unop{τ0} e0 : bτ0c
T0; Γ0 ` e0 : U

T0; Γ0 ` dyn (`0J τ0J `1) e0 : bτ0c

T0; Γ0 `s e0 : s0

T0; Γ0 `s check{τ0} e0 p0 : bτ0c
T0; Γ0 `s e0 : U

T0; Γ0 `s check{τ0} e0 p0 : bτ0c

T ; Γ `s e : U (selected rules)

(p0 : s0) ∈ T0

T0; Γ0 `s p0 : U
(x0 : U) ∈ Γ0

T0; Γ0 `s x0 : U

T0; Γ0 `s e0 : bτ0c
T0; Γ0 `s stat (`0J τ0J `1) e0 : U

T0; Γ0 `s e0 : U
T0; Γ0 `s check{U} e0 p0 : U

T0; Γ0 `s e0 : s0

T0; Γ0 `s check{U} e0 p0 : U

Figure 33: Flat syntax, typing rules, and ownership consistency

82

Erasure Evaluation Syntax extends Evaluation Language

v = i | n | 〈v, v〉 | λx. e | λ(x : τ). e

Γ `0 e : U (selected rules)

(x0 : τ/U) ∈ Γ0

Γ0 `0 x0 : U
(x0 : U), Γ0 `0 e0 : U

Γ0 `0 λx0. e0 : U
(x0 : τ0), Γ0 `0 e0 : U

Γ0 `0 λ(x0 : τ0). e0 : U

Γ0 `0 e0 : U
Γ0 `0 dyn b0 e0 : U

Γ0 `0 e0 : U
Γ0 `0 stat b0 e0 : U

Figure 34: Erased evaluation syntax and typing

Erased Syntax

Figure 34 defines an evaluation syntax for type-erased programs. Ex-
pressions include error terms; the typing judgment holds for any ex-
pression without free variables. Aside from the type annotations left
over from the surface syntax, which could be removed with a transla-
tion step, the result is a conventional dynamically-typed language.

4.5.3 Properties of Interest

Type soundness guarantees that the evaluation of a well-formed ex-
pression (1) cannot end in an invariant error and (2) preserves an
evaluation-language image of the surface type. Note that an invari-
ant error captures the classic idea of going wrong [69].

Definition 4.5.1 (F-type soundness). Let F map surface types to evalua-
tion types. A semantics X satisfies TS((F)) if for all e0 : τ/U wf one of the
following holds:

• e0 →∗X v0 and `X v0 : F(τ/U)

• e0 →∗X {TagErr, DivErr} ∪ BndryErr (b∗, v)

• e0 →∗X diverges.

Three surface-to-evaluation maps (F) suffice for the evaluation lan-
guages: an identity map 1, a type-shape map s that extends the type-
to-shape metafunction from figure 30, and a constant map 0:

1(τ/U) = τ/U s(τ/U) =

{
U if τ/U = U
bτ0c if τ/U = τ0

0(τ/U) = U

Complete monitoring guarantees that the type on each component
boundary monitors all interactions between client and server compo-
nents. The definition of “all interactions” comes from the path-based

4.5 83

ownership propagation laws (chapter 4.4.4); the labels on a value enu-
merate all partially-responsible components. Relative to this specifica-
tion, a reduction that preserves single-owner consistency (figure 29)
ensures that a value cannot enter a new component without a full
type check.

Definition 4.5.2 (complete monitoring). A semantics X satisfies CM if
for all (e0)

`0 : τ/U wf and all e1 such that e0 →∗X e1, the contractum is
single-owner consistent: `0 e1.

Blame soundness and blame completeness measure the quality of error
messages relative to a specification of the components that handled
a value during an evaluation. A blame-sound semantics guarantees
a subset of the true senders, though it may miss some or even all. A
blame-complete semantics guarantees all the true senders, though it
may include irrelevant information. A sound and complete semantics
reports exactly the components that sent the value across a partially-
checked boundary.

The standard definitions for blame soundness and blame complete-
ness rely on the path-based ownership propagation laws from chap-
ter 4.4.4. Relative to these laws, the definitions relate the sender
names in a set of boundaries (figure 31) to the true owners of the
mismatched value.

Definition 4.5.3 (path-based blame soundness and blame complete-
ness). For all well-formed e0 such that e0 →∗X BndryErr (b∗0 , v0):

• X satisfies BS iff senders (b∗0) ⊆ owners (v0)

• X satisfies BC iff senders (b∗0) ⊇ owners (v0).

A second useful specification extends the propagation laws to push
the owners for each location (p) onto the value heap (H). Chap-
ter 4.5.8 develops this idea to characterize the blame guarantees of
the Transient semantics.

Lastly, the error preorder relation allows direct behavioral compar-
isons. If X and Y represent two strategies for type enforcement, then
X . Y states that the Y semantics reduces at least as many expres-
sions to a value as the X semantics.

Definition 4.5.4 (error preorder). X . Y iff e0 →∗Y Err0 implies e0 →∗X
Err1 for all well-formed expressions e0.

If two semantics lie below one another on the error preorder, then
they report type mismatches on the same well-formed expressions.

Definition 4.5.5 (error equivalence). X h Y iff X . Y and Y . X.

84

e B e
unop{τ0} v0 B InvariantErr

if v0 6∈ (G (`J (τ×τ)J `) v)
and δ(unop, v0) is undefined

unop{τ0} v0 B δ(unop, v0)

if δ(unop, v0) is defined

binop{τ0} v0 v1B InvariantErr

if δ(binop, v0, v1) is undefined

binop{τ0} v0 v1B δ(binop, v0, v1)

if δ(binop, v0, v1) is defined

app{τ0} v0 v1 B InvariantErr

if v0 6∈ (λ(x : τ). e) ∪
(G (`J (τ⇒τ)J `) v)

app{τ0} v0 v1 B e0[x0←v1]

if v0 = (λ(x0 : τ1). e0)

e I e
unop{U} v0 ITagErr

if v0 6∈ (G (`J (τ×τ)J `) v)
and δ(unop, v0) is undefined

unop{U} v0 I δ(unop, v0)

if δ(unop, v0) is defined

binop{U} v0 v1ITagErr

if δ(binop, v0, v1) is undefined

binop{U} v0 v1I δ(binop, v0, v1)

if δ(binop, v0, v1) is defined

app{U} v0 v1 ITagErr

if v0 6∈ (λx. e) ∪
(G (`J (τ⇒τ)J `) v)

app{U} v0 v1 I e0[x0←v1]

if v0 = (λx0. e0)

Figure 35: Common notions of reduction for Natural, Co-Natural,
Forgetful, and Amnesic

4.5.4 Common Higher-Order Notions of Reduction

Four of the semantics build on the higher-order evaluation syntax. In
redexes that do not mix typed and untyped values, these semantics
share the common behavior specified in figure 35. The rules for typed
code (B) handle basic elimination forms and raise an invariant error
(InvariantErr) for invalid input. Type soundness ensures that such er-
rors do not occur. The rules for untyped code (I) raise a tag error for
a malformed redex. Later definitions, for example figure 36, combine
relations via set union to build one large relation to accomodate all
redexes. The full reduction relation is the reflexive-transitive closure
of such a set.

4.5.5 Natural and its Properties

Figure 36 presents the values and key reduction rules for the Nat-
ural semantics. Conventional reductions handle primitives and un-
wrapped functions (I and B, figure 35).

A successful Natural reduction yields either an unwrapped value
or a guard-wrapped function. Guards arise when a function value
reaches a function-type boundary. Thus, the possible wrapped values
are drawn from the following two sets:

vs = G (`J (τ⇒τ)J `) (λx. e)
| G (`J (τ⇒τ)J `) vd

4.5 85

Natural Syntax extends Higher-Order Evaluation Syntax

v = i | n | 〈v, v〉 | λx. e | λ(x : τ). e | G (`J τ⇒τJ `) v

e B
N

e

dyn (`0J τ0⇒τ1J `1) v0 B
N

G (`0J τ0⇒τ1J `1) v0

if shape-match (bτ0⇒τ1c, v0)

dyn (`0J τ0×τ1J `1) 〈v0, v1〉 B
N
〈dyn b0 v0, dyn b1 v1〉

if shape-match (bτ0×τ1c, 〈v0, v1〉)
where b0 = (`0J τ0J `1) and b1 = (`0J τ1J `1)

dyn (`0J τ0J `1) i0 B
N

i0
if shape-match (bτ0c, i0)

dyn (`0J τ0J `1) v0 B
N

BndryErr ({(`0J τ0J `1)}, v0)

if ¬shape-match (bτ0c, v0)

app{τ0} (G (`0J τ1⇒τ2J `1) v0) v1BNdyn b0 (app{U} v0 (stat b1 v1))

where b0 = (`0J τ2J `1) and b1 = (`1J τ1J `0)

e I
N

e

stat (`0J τ0⇒τ1J `1) v0 I
N

G (`0J τ0⇒τ1J `1) v0

if shape-match (bτ0c, v0)

stat (`0J τ0×τ1J `1) 〈v0, v1〉 I
N
〈stat b0 v0, stat b1 v1〉

if shape-match (bτ0×τ1c, 〈v0, v1〉)
where b0 = (`0J τ0J `1) and b1 = (`0J τ1J `1)

stat (`0J τ0J `1) i0 I
N

i0
if shape-match (bτ0c, i0)

stat (`0J τ0J `1) v0 I
N

InvariantErr

if ¬shape-match (bτ0c, v0)

app{U} (G (`0J τ0⇒τ1J `1) v0) v1INstat b0 (app{τ1} v0 (dyn b1 v1))

where b0 = (`0J τ1J `1) and b1 = (`1J τ0J `0)

e→∗
N

e = →∗⋃{B
N

,I
N

,I,B}

Figure 36: Natural notions of reduction

86

vd = G (`J (τ⇒τ)J `) (λ(x : τ). e)
| G (`J (τ⇒τ)J `) vs

The presented reduction rules are those relevant to the Natural
strategy for enforcing static types. When a dynamically-typed value
reaches a typed context (dyn), Natural checks the shape of the value
against the type. If the type and value match, Natural wraps func-
tions and recursively checks the elements of a pair. Otherwise, Natu-
ral raises an error at the current boundary. When a wrapped function
receives an argument, Natural creates two new boundaries: one to
protect the input to the inner, untyped function and one to validate
the result.

Reduction in dynamically-typed code (I
N

) follows a dual strategy.
The rules for stat boundaries wrap functions and recursively protect
the contents of pairs. The application of a wrapped function creates
boundaries to validate the input to a typed function and to protect
the result.

Unsurprisingly, this checking protocol ensures the validity of types
in typed code and the well-formedness of expressions in untyped
code. The Natural approach furthemore enforces boundary types
throughout the execution.

Theorem 4.5.6. Natural satisfies TS((1)).

Proof Idea. By progress and preservation lemmas for the higher-order
typing judgment (`1). For example, if an untyped pair reaches a
boundary then a typed step (B

N
) makes progress to either a new pair

or an error. In the former case, the new pair contains two boundary
expressions:

dyn (`0J τ0×τ1J `1) 〈v0, v1〉 BN
〈dyn (`0J τ0J `1) v0, dyn (`0J τ1J `1) v1〉

The typing rules for pairs and for dyn boundaries validate the type of
the result.

Theorem 4.5.7. Natural satisfies CM.

Proof Idea. By showing that a lifted variant of the →∗
N

relation pre-
serves single-owner consistency (). Full lifted rules for Natural ap-
pear in an appendix, but one can derive the rules by applying the
guidelines from section 4.4.4. For example, consider the I

N
rule that

wraps a function. The lifted version accepts a term with arbitrary
ownership labels and propagates these labels to the result:

(stat (`0J (τ0⇒τ1)J `1) ((v0))
`2)

`3
I
N

(G (`0J (τ0⇒τ1)J `1) ((v0))
`2)

`3

if shape-match (bτ0⇒τ1c, v0)

If the redex satisfies single-owner consistency, then the context label
matches the client name (`3 = `0) and the labels inside the boundary

4.5 87

match the sender name (`2 = `1 · · · `1). Under these premises, the
result also satisfies single-owner consistency.

Complete monitoring implies that the Natural semantics detects
every mismatch between two components—either immediately, or as
soon as a function computes an incorrect result. Consequently, every
mismatch is due to a single boundary. Blame soundness and com-
pleteness ask whether Natural identifies the culprit.

Lemma 4.5.8. If e0 is well-formed and e0 →∗N BndryErr (b∗0 , v0), then
senders (b∗0)= owners (v0) and furthermore b∗0 contains exactly one bound-
ary specification.

Proof. The sole Natural rule that detects a mismatch blames a single
boundary:

(e0)
`0 →∗

N
E[dyn (`1J τ0J `2) v0]

→∗
N

BndryErr ({(`1J τ0J `2)}, v0)

Thus b∗0 = {(`1J τ0J `2)} and senders (b∗0) = {`2}. This boundary is the
correct one to blame only if it matches the true owner of the value;
that is, owners (v0) = {`2}. Complete monitoring guarantees a match
via `0 E[dyn (`1J τ0J `2) v0].

Corollary 4.5.9. Natural satisfies BS and BC.

4.5.6 Co-Natural and its Properties

Figure 37 presents the Co-Natural strategy. Co-Natural is a lazy vari-
ant of the Natural approach. Instead of eagerly validating pairs at
a boundary, Co-Natural creates a wrapper to delay element-checks
until they are needed.

Relative to Natural, there are two changes in the notions of reduc-
tion. First, the rules for a pair value at a pair-type boundary create
guards. Second, new projection rules handle guarded pairs; these
rules make a new boundary to validate the projected element.

Co-Natural still satisfies both a strong type soundness theorem and
complete monitoring. Blame soundness and blame completeness fol-
low from complete monitoring. Nevertheless, Co-Natural and Natu-
ral can behave differently.

Theorem 4.5.10. Co-Natural satisfies TS((1)).

Proof Idea. By progress and preservation lemmas for the higher-order
typing judgment (`1). For example, consider the rule that applies a
wrapped function in a statically-typed context:

app{τ0} (G (`0J (τ1⇒τ2)J `1) v0) v1 BC
dyn (`0J τ2J `1) (app{U} v0 (stat (`1J τ1J `2) v1))

If the redex is well-typed, then v1 has type τ1 and the inner stat bound-
ary is well-typed. Similar reasoning for v0 shows that the untyped

88

Co-Natural Syntax extends Higher-Order Evaluation Syntax

v = i | n | 〈v, v〉 | λx. e | λ(x : τ). e |
G (`J τ⇒τJ `) v | G (`J τ×τJ `) v

e B
C

e

dyn (`0J τ0J `1) v0 B
C

G (`0J τ0J `1) v0

if shape-match (bτ0c, v0) and v0 ∈ 〈v, v〉 ∪ (λx. e) ∪ (G b v)
dyn (`0J τ0J `1) i0 B

C
i0

if shape-match (bτ0c, i0)
dyn (`0J τ0J `1) v0 B

C
BndryErr ({(`0J τ0J `1)}, v0)

if ¬shape-match (bτ0c, v0)

fst{τ0} (G (`0J τ1×τ2J `1) v0) B
C

dyn b0 (fst{U} v0)

where b0 = (`0J τ1J `1)

snd{τ0} (G (`0J τ1×τ2J `1) v0) B
C

dyn b0 (snd{U} v0)

where b0 = (`0J τ2J `1)

app{τ0} (G (`0J τ1⇒τ2J `1) v0) v1BC dyn b0 (app{U} v0 (stat b1 v1))

where b0 = (`0J τ2J `1) and b1 = (`1J τ1J `0)

e I
C

e

stat (`0J τ0J `1) v0 I
C

G (`0J τ0J `1) v0

if shape-match (bτ0c, v0) and v0 ∈ 〈v, v〉 ∪ (λ(x : τ). e) ∪ (G b v)
stat (`0J τ0J `1) i0 I

C
i0

if shape-match (bτ0c, i0)
stat (`0J τ0J `1) v0 I

C
InvariantErr

if ¬shape-match (bτ0c, v0)

fst{U} (G (`0J τ0×τ1J `1) v0) I
C

stat b0 (fst{τ0} v0)

where b0 = (`0J τ0J `1)

snd{U} (G (`0J τ0×τ1J `1) v0) I
C

stat b0 (snd{τ1} v0)

where b0 = (`0J τ1J `1)

app{U} (G (`0J τ0⇒τ1J `1) v0) v1IC stat b0 (app{τ1} v0 (dyn b1 v1))

where b0 = (`0J τ1J `1) and b1 = (`1J τ0J `0)

e→∗
C

e = →∗⋃{B
C

,I
C

,I,B}

Figure 37: Co-Natural notions of reduction

4.5 89

application in the result is well-typed. Thus the dyn boundary has
type τ2 which, by inversion on the redex, is a subtype of τ0.

Theorem 4.5.11. Co-Natural satisfies CM.

Proof Idea. By preservation of single-owner consistency for the lifted
→∗

C
relation. Consider the lifted rule that applies a wrapped function:

(app{τ0} ((G (`0J (τ1⇒τ2)J `1) (v0)
`2))

`3
v1)

`4

B
C

(dyn (`0J τ2J `1) (app{U} v0 (stat (`1J τ1J `0) (v1)
`4rev (`3)))

`2
)
`3`4

If the redex satisfies single-owner consistency, then `0 = `3 = `4 and
`1 = `2. Hence both sequences of labels in the result contain nothing
but the context label `4.

Theorem 4.5.12. Co-Natural satisfies BS and BC.

Proof Idea. By the same line of reasoning that supports Natural; refer
to lemma 4.5.8.

Theorem 4.5.13. N . C.

Proof Idea. By a stuttering simulation. Natural takes extra steps when
a pair reaches a boundary because it immediately checks the contents;
Co-Natural creates a guard wrapper. Co-Natural takes additional
steps when eliminating a wrapped pair. The appendix defines the
simulation relation.

The pair wrappers in Co-Natural imply C 6. N. Consider a typed
expression that imports an untyped pair with an ill-typed first ele-
ment.

dyn (`0JNat×NatJ `1) 〈−2, 2〉
Natural detects the mismatch at the boundary, but Co-Natural will
only raise an error if the first element is accessed.

4.5.7 Forgetful and its Properties

The Forgetful semantics (figure 38) creates wrappers to enforce pair
and function types, but strictly limits the number of wrappers on any
one value. An untyped value acquires at most one wrapper. A typed
value acquires at most two wrappers: one to protect itself from inputs,
and a second to reflect the expectations of its current client:

vs = G b 〈v, v〉
| G b λx. e
| G b (G b 〈v, v〉)
| G b (G b λ(x : τ). e)

vd = G b 〈v, v〉
| G b λ(x : τ). e

Forgetful enforces this two-wrapper limit by removing the outer
wrapper of any guarded value that exits typed code. Re-entering

90

Forgetful Syntax extends Higher-Order Evaluation Syntax

v = i | n | 〈v, v〉 | λx. e | λ(x : τ). e |
G (`J τ⇒τJ `) v | G (`J τ×τJ `) v

e B
F

e

dyn (`0J τ0J `1) v0 B
F

G (`0J τ0J `1) v0

if shape-match (bτ0c, v0) and v0 ∈ 〈v, v〉 ∪ (λx. e) ∪ (G b v)
dyn (`0J τ0J `1) v0 B

F
i0

if shape-match (bτ0c, v0)

dyn (`0J τ0J `1) v0 B
F

BndryErr ({(`0J τ0J `1)}, v0)

if ¬shape-match (bτ0c, v0)

fst{τ0} (G (`0J τ1×τ2J `1) v0) B
F

dyn b0 (fst{U} v0)

where b0 = (`0J τ1J `1)

snd{τ0} (G (`0J τ1×τ2J `1) v0) B
F

dyn b0 (snd{U} v0)

where b0 = (`0J τ2J `1)

app{τ0} (G (`0J τ1×τ2J `1) v0) v1BF dyn b0 (app{U} v0 (stat b1 v1))

where b0 = (`0J τ2J `1) and b1 = (`1J τ1J `0)

e I
F

e

stat (`0J τ0J `1) v0 I
F

G (`0J τ0J `1) v0

if shape-match (bτ0c, v0) and v0 ∈ 〈v, v〉 ∪ (λ(x : τ). e)
stat (`0J τ0J `1) (G b1 v0) I

F
v0

if shape-match (bτ0c, v0)

and v0 ∈ 〈v, v〉 ∪ (λx. e) ∪ (G b 〈v, v〉) ∪ (G b (λ(x : τ). e))
stat (`0J τ0J `1) i0 I

F
i0

if shape-match (bτ0c, i0)
stat (`0J τ0J `1) v0 I

F
InvariantErr

if ¬shape-match (bτ0c, v0)

fst{U} (G (`0J τ0×τ1J `1) v0) I
F

stat b0 (fst{τ0} v0)

where b0 = (`0J τ0J `1)

snd{U} (G (`0J τ0×τ1J `1) v0) I
F

stat b0 (snd{τ1} v0)

where b0 = (`0J τ1J `1)

app{U} (G (`0J τ0⇒τ1J `1) v0) v1IF stat b0 (app{τ1} v0 (dyn b1 v1))

where b0 = (`0J τ1J `1) and b1 = (`1J τ0J `0)

e→∗
F

e = →∗⋃{B
F

,I
F

,I,B}

Figure 38: Forgetful notions of reduction

4.5 91

typed code makes a new wrapper, but these wrappers do not accu-
mulate because a value cannot enter typed code twice in a row; it
must first exit typed code and lose one wrapper.

Removing outer wrappers does not affect the type soundness of un-
typed code; all well-formed values match U, with or without wrap-
pers. Type soundness for typed code is guaranteed by the temporary
outer wrappers. Complete monitoring is lost, however, because the
removal of a wrapper creates a joint-ownership situation. Similarly,
Forgetful lies above Co-Natural and Natural in the error preorder.

When a type mismatch occurs, Forgetful blames one boundary.
Though sound, this one boundary is generally not enough informa-
tion to find the source of the problem. So, Forgetful fails to satisfy
blame completeness.

Theorem 4.5.14. Forgetful satisfies TS((1)).

Proof Idea. By progress and preservation lemmas for the higher-order
typing judgment (`1). The most interesting proof case shows that
dropping a guard wrapper does not break type soundness. Suppose
that a pair v0 with static type Int×Int crosses two boundaries and
re-enters typed code at a different type.

dyn (`0J (Nat×Nat)J `1) (stat (`1J Int×IntJ `2) v0) →∗F
G (`0J (Nat×Nat)J `1) (G (`1J Int×IntJ `2) v0)

No matter what value v0 is, the result is well-typed because the con-
text trusts the outer wrapper. If this double-wrapped value—call
it v2—crosses another boundary, Forgetful drops the outer wrapper.
Nevertheless, the result is a sound dynamically-typed value:

stat (`3J (Nat×Nat)J `0) v2 →∗F
G (`1J Int×IntJ `2) v0

When this single-wrapped wrapped pair reenters a typed context,
it again gains a wrapper to document the context’s expectation:

dyn (`4J (τ1×τ2)J `3) (G (`1J Int×IntJ `2) v0) →∗F
G (`4J (τ1×τ2)J `3) (G (`1J Int×IntJ `2) v0)

The new wrapper preserves soundness.

Theorem 4.5.15. Forgetful does not satisfy CM.

Proof. Consider the lifted variant of the stat rule that removes an outer
guard wrapper:

(stat (`0J τ0J `1) ((G b1 v0))
`2)

`3
I
F
((v0))

`2`3

if shape-match (bτ0c, (G b1 v0))

Suppose `0 6= `1. If the redex satisfies single-owner consistency, then
`2 contains `1 and `3 = `0. Thus the rule creates a contractum with
two distinct labels.

Theorem 4.5.16. Forgetful satisfies BS.

92

Proof. By a preservation lemma for a weakened version of the judg-
ment, which is defined in the appendix. The judgment asks whether
the owners on a value contain at least the name of the current compo-
nent. Forgetful easily satisfies this invariant because the ownership
guidelines (section 4.4.4) never drop an un-checked label. Thus, when
a boundary error occurs:

dyn (`0J τ0J `1) v0 BF BndryErr ({(`0J τ0J `1)}, v0)

if ¬shape-match (bτ0c, v0)

the sender name `1 matches one of the ownership labels on v0.

Theorem 4.5.17. Forgetful does not satisfy BC.

Proof. The proof of theorem 4.5.15 shows how a pair value can acquire
two labels. A function can gain owners in a similar fashion, and reach
an incompatible boundary:

dyn (`2J IntJ `1) ((λx0. x0))
`0`1 B

F

BndryErr ({(`2J IntJ `1)}, ((λx0. x0))
`0`1)

In this example, the error does not point to component `0.

Theorem 4.5.18. C . F.

Proof Idea. By a stuttering simulation. Co-Natural can take extra steps
at an elimination form to unwrap an arbitrary number of wrappers;
Forgetful has at most two to unwrap.

In the other direction, F 6. C because Forgetful drops checks. Let:

e0 = stat b0 (dyn (`0J (Nat⇒Nat)J `1) (λx0. x0))

e1 = app{U} e0 〈2, 8〉
Then e1 →∗F 〈2, 8〉 and Co-Natural raises a boundary error.

4.5.8 Transient and its Properties

The Transient semantics in figure 39 builds on the flat evaluation syn-
tax (figure 33); it stores pairs and functions on a heap as indicated by
the syntax of figure 33, and aims to enforce type constructors (s, or
bτc) through shape checks. For every pre-value w stored on a heap H ,
there is a corresponding entry in a blame map B that points to a set
of boundaries. The blame map provides information if a mismatch
occurs, following Reticulated Python [113, 115].

Unlike for the higher-order-checking semantics, there is significant
overlap between the Transient rules for typed and untyped redexes.
Thus figure 39 presents one notion of reduction. The first group of
rules in figure 39 handle boundary expressions and check expressions.
When a value reaches a boundary, Transient matches its shape against
the expected type. If successful, the value crosses the boundary and
its blame map records the fact; otherwise, the program halts. For a
dyn boundary, the result is a boundary error. For a stat boundary, the

4.5 93

Transient Syntax extends First-Order Evaluation Syntax

v = i | n | p

e; H ; B IB
T

e; H ; B (selected rules)

(dyn (`0J τ0J `1) v0); H0; B0 IBT v0; H0; (B0[v0 ∪ {(`0J τ0J `1)}])
if shape-match (bτ0c, H0(v0))

(dyn (`0J τ0J `1) v0); H0; B0 IBT BndryErr ({(`0J τ0J `1)}, v0); H0; B0

if ¬shape-match (bτ0c, H0(v0))

(stat (`0J τ0J `1) v0); H0; B0 IBT v0; H0; (B0[v0 ∪ {(`0J τ0J `1)}])
if shape-match (bτ0c, H0(v0))

(stat (`0J τ0J `1) v0); H0; B0 IBT InvariantErr; H0; B0

if ¬shape-match (bτ0c, H0(v0))

(check{U} v0 p0); H0; B0 IB
T

v0; H0; B0

(check{τ0} v0 p0); H0; B0 IB
T

v0; H0; (B0[v0 ∪ B0(p0)])

if shape-match (bτ0c, H0(v0))

(check{τ0} v0 p0); H0; B0 IB
T
BndryErr (B0(v0) ∪ B0(p0), v0); H0; B0

if ¬shape-match (bτ0c, H0(v0))

(unop{τ/U} p0); H0; B0 IB
T

(check{τ/U} δ(unop, H0(p0)) p0); H0; B0

if δ(unop, H0(p0)) is defined

(binop{τ/U} i0 i1); H0; B0 IB
T

δ(binop, i0, i1); H0; B0

if δ(binop, i0, i1) is defined

(app{τ0} p0 v0); H0; B0 IB
T

(check{τ0} e0[x0←v0] p0); H0; B1

if H0(p0) = λx0. e0

and B1 = B0[v0 ∪ rev (B0(p0))]

(app{U} p0 v0); H0; B0 IB
T

(e0[x0←v0]); H0; B0

if H0(p0) = λx0. e0

(app{τ/U} p0 v0); H0; B0 IB
T

(check{τ/U} e0[x0←v0] p0); H0; B1

if H0(p0) = λ(x0 : τ0). e0 and shape-match (bτ0c, H0(v0))

and B1 = B0[v0 ∪ rev (B0(p0))]

(app{τ/U} p0 v0); H0; B0 IB
T

BndryErr (rev (B0(p0)), v0); H0; B1

if H0(p0) = λ(x0 : τ0). e0 and ¬shape-match (bτ0c, H0(v0))

where B1 = B0[v0 ∪ rev (B0(p0))]

w0; H0; B0 IB
T

p0; ({p0 7→ w0} ∪H0); ({p0 7→ ∅} ∪ B0)

where p0 fresh in H0 and B0

e; H ; B →∗
T

e; H ; B = →∗T
where E[e0]; H0; B0 T E[e1]; H1; B1 if e0; H0; B0 IBT e1; H1; B1

Figure 39: Transient notions of reduction

94

mismatch reflects an invariant error in typed code. Check expressions
similarly match a value against a type-shape. On success, the blame
map gains the boundaries associated with the location p0 from which
the value originated. On failure, these same boundaries may help the
programmer diagnose the fault.

The second group of rules handle primitives and application. Pair
projections and function applications must be followed by a check
in typed contexts to enforce the type annotation at the elimination
form. In untyped contexts, a check for the dynamic type embeds a
possibly-typed subexpression. The binary operations are not elimi-
nation forms, so they are not followed by a check. Applications of
typed functions additionally check the input value against the func-
tion’s domain type. If successful, the blame map records the check.
Otherwise, Transient reports the boundaries associated with the func-
tion [115]. Note that untyped functions may appear in typed contexts,
and vice-versa.

Applications of untyped functions in untyped code do not update
the blame map. This allows an implementation to insert all checks
by rewriting typed code at compile-time, leaving untyped code as is.
Protected typed code can then interact with any untyped libraries.

Not shown in figure 39 are rules for elimination forms that halt the
program. When δ is undefined or when a non-function is applied,
the result is either an invariant error or a tag error depending on the
context—analogous to the higher-order semantics.

Transient shape checks do not guarantee full type soundness, com-
plete monitoring, or the standard blame soundness and completeness.
They do, however, preserve the top-level shape of all values in typed
code. Furthermore, Transient satisfies a heap-based notion of blame
soundness. Blame completeness fails because Transient does not up-
date the blame map when an untyped function is applied in an un-
typed context.

Theorem 4.5.19. Transient does not satisfy TS((1)).

Proof Idea. Let e0 = dyn (`0J (Nat⇒Nat)J `1) (λx0.−4).

• ` e0 : Nat⇒Nat in the surface syntax, but

• e0; ∅; ∅→∗
T

p0; H0; B0, where H0(p0) = (λx0.−4)

and 6`1 (λx0.−4) : Nat⇒Nat.

Theorem 4.5.20. Transient satisfies TS((s)).

Proof Idea. Recall that s maps types to type shapes and the unitype
to itself. The proof depends on progress and preservation lemmas
for the flat typing judgment (`s). Although Transient lets any well-
shaped value cross a boundary, the check expressions that appear
after elimination forms preserve soundness. Suppose that an untyped

4.5 95

function crosses a boundary and eventually computes an ill-typed
result:

(app{Int} p0 4); H0; B0 IBT (check{Int} 〈4, plus{U} 4 1〉 p0); H0; B1

if H0(p0) = λx0. 〈x0, plus{U} x0 1〉
and B1 = B0[v0 ∪ rev (B0(p0))]

The check expression guards the context.

Theorem 4.5.21. Transient does not satisfy CM.

Proof. A structured value can cross any boundary with a matching
shape, regardless of the deeper type structure. For example, the fol-
lowing annotated rule adds a new label to a pair:

(dyn (`0J τ0×τ1J `1) ((p0))
`2)

`3
; H0; B0 IB

T
((p0))

`2`3 ; H0; B1

where H0(p0) ∈ 〈v, v〉

Theorem 4.5.22. Transient does not satisfy BS.

Proof. Let component `0 define a function f0 and export it to compo-
nents `1 and `2. If component `2 triggers a type mismatch, as sketched
below, then Transient blames both component `2 and the irrelevant `1:

`1 `0 `2f3 !

The following term expresses this scenario using a let-expression
to abbreviate untyped function application:
(let f0 = (λx0. 〈x0, x0〉) in

let f1 = (stat (`0J (Int⇒ Int)J `1) (dyn (`1J (Int⇒ Int)J `0) (f0)
`0)

`1
) in

stat (`0J IntJ `2) (app{Int} (dyn (`2J (Int⇒ Int)J `0) (f0)
`0) 5)

`2
)
`0

; ∅; ∅
Reduction ends in a boundary error that blames three components.

Theorem 4.5.23. Transient does not satisfy BC.

Proof. An untyped function application in untyped code does not up-
date the blame map:

(app{U} p0 v0); H0; B0 IBT (e0[x0←v0]); H0; B0

if H0(p0) = λx0. e0

Such applications lead to incomplete blame when the function has
previously crossed a type boundary. To illustrate, the term below uses
an untyped identity function f1 to coerce the type of another function
(f0). After the coercion, an application leads to type mismatch.
(let f0 = stat (`0J τ0J `1) (dyn (`1J τ0J `2) (λx0. x0)) in

let f1 = stat (`0J (τ0⇒τ1)J `3) (dyn (`3J (τ0⇒τ1)J `4) (λx1. x1)) in

stat (`0J (Int×Int)J `5)

(app{Int×Int} (dyn (`5J τ1J `0) (app{U} f1 f0)
`0) 42)

`5
)
`0

; ∅; ∅

96

Reduction ends in a boundary error that does not report the crucial
labels `3 and `4.

The results so far paint a negative picture of the wrapper-free Tran-
sient semantics. It fails CM and BC because it has no interposition
mechanism to keep track of type implications for untyped code. Ad-
ditionally, its heap-based approach to blame fails BS because the
blame heap conflates different paths in a program. If several clients
use the same library function and one client encounters a type mis-
match, everyone gets blamed.

We have struggled to find a positive characterization of Transient’s
blame behavior. Complete monitoring and blame completeness ap-
pear unattainable, even in a weakened form, because Transient has
no control over untyped code. Blame soundness, however, is possible
under a relaxed specification of ownership that adds one guideline to
the “natural laws” from chapter 4.4.4:

8. If an address gains a label, then so does the associated pre-value
on the heap.

fst (p0)
`0 ; H0; B0; O0 → (p1)

`0 ; H0; B0; O0[p1 ∪ {`0}]
where H0(p0) = 〈p1, p2〉

Law 3 propagates the outer label, which goes up to

the ownership heap (O).

Intuitively, the new specification pushes all ownership labels onto the
heap. Rather than push to the value heap (H) directly, though, the
extended model of Transient in the appendix introduces a parallel
store (O) analogous to the blame heap.

Merging ownership labels on the heap is a non-compositional be-
havior. A programmer cannot reason about a local expression with-
out thinking about how the rest of the codebase may introduce new
owners. Because of this whole-program action, it is unclear whether
the weakened notions of blame that follow are useful guarantees to
strive for. Nevertheless, they help characterize Transient.

Definition 4.5.24 (heap-based blame soundness and blame complete-
ness). For all well-formed e0 such that e0 →∗X BndryErr (b∗0 , v0); H0; B0; O0 :

• X satisfies BS-h iff senders (b∗0) ⊆ owners (v0) ∪ O0(v0)

• X satisfies BC-h iff senders (b∗0) ⊇ owners (v0) ∪ O0(v0).

Theorem 4.5.25. Transient satisfies BS-h.

Proof Idea. By a preservation lemma for the h judgment sketched in
figure 40 and fully-defined in the appendix. The judgment ensures

4.5 97

O; L ; ` h e; B (selected rules)

senders (B0(p0)) ⊆ O0(p0)

O0; L0; `0 h p0; B0

O0; L0; `0 h e0; B0 senders (B0(p0)) ⊆ O0(p0)

O0; L0; `0 h check{τ0} e0 p0; B0

Figure 40: Heap-based ownership consistency for Transient

that the blame map records a subset of the true owners on each heap-
allocated value. One subtle case of the proof concerns function appli-
cation, because the unlabeled rule appears to blame a typed function
(at address p0) for an unrelated incompatible value:

(app{τ/U} p0 v0); H0; B0 IBT BndryErr (rev (B0(p0)), v0); H0; B1

if H0(p0) = λ(x0 : τ0). e0 and ¬shape-match (bτ0c, H0(v0))

where B1 = B0[v0 ∪ rev (B0(p0))]

But, the value is not unrelated because the shape check happens when
this value meets the function’s type annotation; that is, after the func-
tion receives the input value. By law 4, the correct labeling matches
the following outline:

(app{τ/U} ((p0))
`0 ((v0))

`1)
`0

; . . . IB
T

(BndryErr (. . . , ((v0))
`1`0rev (`0)))

`0
; . . .

Additionally blaming B0(v0) seems like a useful change to the origi-
nal Transient semantics because it offers more information. Thanks to
heap-based ownership, the technical justification is that adding these
boundaries preserves the BS-h property.

Theorem 4.5.26. Transient does not satisfy BC-h.

Proof. Blame completeness fails because Transient does not update
the blame map during an untyped function application. Refer to the
proof of theorem 4.5.23 for an example.

Theorem 4.5.27. F . T.

Proof Idea. Indirectly, via T h A (theorem 4.5.31) and F . A (theo-
rem 4.5.32).

4.5.9 Amnesic and its Properties

The Amnesic semantics employs the same dynamic checks as Tran-
sient but offers path-based blame information. Whereas Transient

98

Amnesic Syntax extends Higher-Order Evaluation Syntax

v = i | n | 〈v, v〉 | λx. e | λ(x : τ). e |
G (`J τ⇒τJ `) v | G (`J τ×τJ `) v | T b∗ v

e B
A

e (selected rules)

dyn (`0J τ0J `1) v0 B
A

G (`0J τ0J `1) v0

if shape-match (bτ0c, v0)

and rem-trace (v0) ∈ 〈v, v〉 ∪ (λ(x : τ). e) ∪ (G b v)
dyn (`0J τ0J `1) v0 B

A
v0

if shape-match (bτ0c, v0) and rem-trace (v0) ∈ i
dyn (`0J τ0J `1) v0 B

A
BndryErr ({(`0J τ0J `1)} ∪ b∗0 , v0)

if ¬shape-match (bτ0c, v0) and b∗0 = get-trace (v0)

fst{τ0} (G (`0J τ1J `1) v0) B
A

dyn b0 (fst{U} v0)

where b0 = (`0J τ0J `1)

snd{τ0} (G (`0J τ1J `1) v0) B
A

dyn b0 (snd{U} v0)

where b0 = (`0J τ0J `1)

app{τ0} (G (`0J τ1⇒τ2J `1) v0) v1 BA
dyn b0 (app{U} v0 (stat b1 v1))

where b0 = (`0J τ0J `1) and b1 = (`1J τ1J `0)

Figure 41: Amnesic notions of reduction (1/2)

4.5 99

e I
A

e (selected rules)

stat (`0J τ0J `1) v0 I
A

G (`0J τ0J `1) v0

if shape-match (bτ0c, v0) and v0 ∈ 〈v, v〉 ∪ (λ(x : τ). e)
stat b0 (G b1 (T? b∗0 v0)) I

A
trace ({b0, b1} ∪ b∗0) v0

if b0 = (`0J τ0J `1) and shape-match (bτ0c, v0)

and v0 ∈ 〈v, v〉 ∪ (λx. e) ∪ (G b (λ(x : τ). e)) ∪ (G b 〈v, v〉)
stat (`0J τ0J `1) i0 I

A
i0

if shape-match (bτ0c, i0)
stat (`0J τ0J `1) v0 I

A
InvariantErr

if ¬shape-match (bτ0c, v0)

fst{U} (T? b∗0 (G (`0J τ0×τ1J `1) v0)) IA
trace b∗0 (stat b0 (fst{τ0} v0))

where b0 = (`0J τ0J `1)

snd{U} (T? b∗0 (G (`0J τ0×τ1J `1) v0)) IA
trace b∗0 (stat b0 (snd{τ1} v0))

where b0 = (`0J τ1J `1)

app{U} (T? b∗0 (G (`0J τ0J `1) v0)) v1 I
A

trace b∗0 (stat b0 (app{τ2} v0 e0))

where τ0 = τ1⇒τ2 and b0 = (`0J τ2J `1) and b1 = (`1J τ1J `0)

and e0 = (dyn b1 (add-trace (rev (b∗0), v1)))

trace b∗0 v0 I
A

v1

where v1 = add-trace (b∗0 , v0)

e→∗
A

e = →∗⋃{B
A

,I
A

,I,B}

Figure 42: Amnesic notions of reduction (2/2)

100

add-trace (b∗0 , v0)

=

v0

if b∗0 = ∅
T (b∗0 ∪ b∗1) v1

if v0 = T b∗1 v1

T b∗0 v0

if v0 6∈ T b∗ v and b∗0 6= ∅

get-trace (v0)

=

{
b∗0 if v0 = T b∗0 v1

∅ if v0 6∈ T b∗ v

rem-trace (v0)

=

{
v1 if v0 = T b∗0 v1

v0 if v0 6∈ T b∗ v

(T? b∗0 v0) = v1 ⇐⇒ rem-trace (v1) = v0 and get-trace (v1) = b∗0

Figure 43: Metafunctions for Amnesic

indirectly tracks blame through heap addresses, Amnesic uses trace
wrappers to keep boundaries alongside the value at hand.

Amnesic bears a strong resemblance to the Forgetful semantics.
Both use guard wrappers in the same way, keeping a sticky “inner”
wrapper around typed values and a temporary “outer” wrapper in
typed contexts. There are two crucial differences:

• When Amnesic removes a guard wrapper, it saves the boundary
specification in a trace wrapper. The number of boundaries in
a trace can grow without bound, but the number of wrappers
around a value is limited to three.

• At elimination forms, Amnesic checks only the context’s type
annotation. Suppose an untyped function enters typed code at
one type and is used at a supertype:
app{Int} (G (`0J (Nat⇒Nat)J `1) λx0.−7) 2
Amnesic runs this application without error but Forgetful raises
a boundary error.

Thus, the following wrapped values can occur at run-time. Note that
(T? b∗ e) is short for an expression that may or may not have a trace
wrapper (figure 43).

vs = G b (T? b∗ 〈v, v〉)
| G b (T? b∗ λx. e)
| G b (T? b∗ (G b 〈v, v〉))
| G b (T? b∗ (G b λ(x : τ). e))

vd = T b∗ i
| T b∗ 〈v, v〉
| T b∗ λx. e
| T? b∗ (G b 〈v, v〉)
| T? b∗ (G b λ(x : τ). e)

The elimination rules for guarded pairs show the clearest difference
between checks in Amnesic and Forgetful. Amnesic ignores the type
in the guard. Forgetful ignores the type on the primitive operation.

Figure 41 defines three metafunctions and one abbreviation for
trace wrappers. The metafunctions extend, retrieve, and remove the

4.5 101

L ; ` p e (selected rules), extends L ; ` e

b∗0 = {(`0J τ0J `1) · · · (`n−1J τn−1J `n)} L0; `n p v0

L0; `0 p (T b∗0 ((v0))
`n···`1)

`0

Figure 44: Path-based ownership consistency for trace wrappers

boundaries associated with a value. The abbreviation lets reduction
rules accept optionally-traced values.

Amnesic satisfies full type soundness thanks to guard wrappers
and fails complete monitoring because it drops wrappers. This is no
surprise, since Amnesic creates and removes guard wrappers in the
same manner as Forgetful. Unlike the Forgetful semantics, Amnesic
uses trace wrappers to remember the boundaries that a value has
crossed. This information leads to sound and complete blame error
outputs.

Theorem 4.5.28. Amnesic satisfies TS((1)).

Proof Idea. By progress and preservation lemmas for the higher-order
typing judgment (`1). Amnesic creates and drops wrappers in the
same manner as Forgetful (theorem 4.5.14), so the only interesting
proof cases concern elimination forms. For example, when Amnesic
extracts an element from a guarded pair it ignores the type in the
guard (τ1×τ2):

fst{τ0} (G (`0J τ1×τ2J `1) v0) BA dyn (`0J τ0J `1) (fst{U} v0)

The new boundary enforces the context’s assumption (τ0) instead, but
we know that τ0 is a supertype of τ1 by the definition of the higher-
order typing judgment.

Theorem 4.5.29. Amnesic does not satisfy CM.

Proof Idea. Removing a wrapper creates a value with more than one
label:

(stat (`0J (τ0⇒τ1)J `1) ((G b1 ((T b∗0 ((λx0. x0))
`2))

`3
))
`4

)

`5

I
A

((trace ({(`0J (τ0⇒τ1)J `1), b1} ∪ b∗0) ((λx0. x0))
`2))

`3`4`5

Theorem 4.5.30. Amnesic satisfies BS and BC.

Proof Idea. By progress and preservation lemmas for a path-based
consistency judgment, p, that weakens single-owner consistency to

102

allow multiple labels around a trace-wrapped value. Unlike the heap-
based consistency for Transient, which requires an entirely new judg-
ment, path-based consistency only replaces the rules for trace wrap-
pers (shown in figure 44) and trace expressions. Now consider the
guard-dropping rule:

(stat (`0J (τ0⇒τ1)J `1) ((G b1 ((T b∗0 ((λx0. x0))
`2))

`3
))
`4

)

`5

I
A

((trace ({(`0J (τ0⇒τ1)J `1), b1} ∪ b∗0) ((λx0. x0))
`2))

`3`4`5

Path-consistency for the redex implies that `3 and `4 match the compo-
nent names on the boundary b1, and that the client side of b1 matches
the outer sender `1. Thus the new labels on the result match the
sender names on the two new boundaries in the trace.

Theorem 4.5.31. T h A.

Proof Idea. By a stuttering simulation between Transient and Amnesic.
Amnesic may take extra steps at an elimination form and to com-
bine traces into one wrapper. Transient takes extra steps to place
pre-values on the heap and to conservatively check the result of elim-
ination forms. In fact, Amnesic and Transient behave exactly the same
aside from bookkeeping to create wrappers and track blame.

Theorem 4.5.32. F . A.

Proof Idea. By a lock-step bisimulation. The only difference between
Forgetful and Amnesic comes from subtyping. Forgetful uses wrap-
pers to enforce the type on a boundary. Amnesic uses boundary types
only for an initial shape check, and instead uses the static types in
typed code to guide checks at elimination forms. In the following
A 6. F example, a boundary declares one type and an elimination
form requires a weaker type:

fst{Int} (dyn (`0J (Nat×Nat)J `1) 〈−4, 4〉)
Since −4 is an integer, Amnesic reduces to a value. Forgetful detects
an error.

4.5.10 Erasure and its Properties

Figure 45 presents the values and notions of reduction for the Erasure
semantics. Erasure ignores all types at runtime. As the first two
reduction rules show, any value may cross any boundary. When an
incompatible value reaches an elimination form, the result depends
on the context. In untyped code, the redex steps to a standard tag
error. In typed code, however, the malformed redex indicates that
an ill-typed value crossed a boundary. Thus Erasure ends with a
boundary error at the last possible moment; these errors come with
no information because there is no record of the relevant boundary.

4.5 103

Erasure Syntax extends Erasure Evaluation Syntax

v = i | n | 〈v, v〉 | λx. e | λ(x : τ). e

e IB
E

e

dyn (`0J τ0J `1) v0 IB
E

v0

stat (`0J τ0J `1) v0 IB
E

v0

unop{τ0} v0 IB
E

BndryErr (∅, v0)

if δ(unop, v0) is undefined

unop{U} v0 IB
E

TagErr

if δ(unop, v0) is undefined

unop{τ/U} v0 IB
E

δ(unop, v0)

if δ(unop, v0) is defined

binop{τ0} v0 v1 IB
E

BndryErr (∅, vi)

if δ(binop, v0, v1) is undefined and vi 6∈ Int

binop{U} v0 v1 IB
E

TagErr

if δ(binop, v0, v1) is undefined

binop{τ/U} v0 v1 IB
E

δ(binop, v0, v1)

if δ(binop, v0, v1) is defined

app{τ0} v0 v1 IB
E

BndryErr (∅, v0)

if v0 6∈ (λx. e) ∪ (λ(x : τ). e)
app{U} v0 v1 IB

E
TagErr

if v0 6∈ (λx. e) ∪ (λ(x : τ). e)
app{τ/U} (λ(x0 : τ0). e0) v0 IBE e0[x0←v0]

app{τ/U} (λx0. e0) v0 IB
E

e0[x0←v0]

Figure 45: Erasure notions of reduction

104

Theorem 4.5.33. Erasure satisfies neither TS((1)) nor TS((s)).

Proof. Dynamic-to-static boundaries are unsound. An untyped func-
tion, for example, can enter a typed context that expects an integer:

dyn (`0J IntJ `1) (λx0. 42) IB
E

(λx0. 42)

Theorem 4.5.34. Erasure satisfies TS((0)).

Proof Idea. By progress and preservation lemmas for the erased, or
dynamic-typing, judgment (`0). Given well-formed input, every IB

E
rule yields a dynamically-typed result.

Theorem 4.5.35. Erasure does not satisfy CM.

Proof Idea. A static-to-dynamic boundary can create a value with mul-
tiple labels:

(stat (`0J τ0J `1) (v0)
`2)

`3
IB
E
((v0))

`2`3

Theorem 4.5.36.

• Erasure satisfies BS.

• Erasure does not satisfy BC.

Proof Idea. An Erasure boundary error blames an empty set, for ex-
ample:

fst{Int} (λx0. x0) IBE BndryErr (∅, (λx0. x0))

The empty set is trivially sound and incomplete.

Theorem 4.5.37. A . E.

Proof Idea. By a stuttering simulation. Amnesic takes extra steps at
elimination forms, to enforce types, and to create trace wrappers.

As a countexample showing A 6. E, the following applies an un-
typed function:

app{Nat} (dyn (`0J (Nat⇒Nat)J `1) (λx0.−9)) 4

Amnesic checks for a natural-number result and errors, but Erasure
checks nothing.

4.6 discussion

One central design issue of a mixed-typed language is the seman-
tics of types and specifically how their integrity is enforced at the
boundaries between typed and untyped code. Among other things,
the choice determines whether typed code can trust the static types
and the quality of assistance that a programmer receives when a
mixed-typed interaction goes wrong. Without an interaction story,

4.6 105

mixed-typed programs are no better than dynamically-typed pro-
grams when it comes to run-time errors. Properties that hold for
the typed half of the language are only valid under a closed-world as-
sumption [12, 20, 79]; such properties are an important starting point,
but make no contribution to the overall goal.

As the analysis of this chapter demonstrates, the limitations of the
host language determine the invariants that a language designer can
hope to enforce. First, higher-order wrappers enable strong guaran-
tees, but need support from the host runtime system. For example,
Typed Racket is a mature language but lacks wrappers for certain
higher-order values. A language without wrappers of any sort can
provide weaker guarantees by rewriting typed code and maintaining
a global map of blame metadata. If this metadata can be attached
directly to a value, then stronger blame guarantees are in reach.

More precisely, this chapter analyzes six distinct semantics via four
properties (table 2) and establishes an error preorder relation:

• Type soundness is a relatively weak property for mixed-typed
programs; it determines whether typed code can trust its own
types. Except for the Erasure semantics, which does nothing to
enforce types, type soundness does not clearly distinguish the
various strategies.

• Complete monitoring is a stronger property, adapted from the
literature on higher-order contracts [25]. It holds when un-
typed code can trust type specifications and vice-versa; see chap-
ter 4.2.3 for examples.

The last two properties tell a developer what aid to expect if a type
mismatch occurs.

• Blame soundness states that every boundary in a blame mes-
sage is potentially responsible. Four strategies satisfy blame
soundness relative to a standard, path-based notion of respon-
sibility. Transient satisfies blame soundness only if the notion
of responsibility is weakened to merge distinct references to the
same heap-allocated value. Erasure is trivially blame-sound be-
cause it gives the programmer zero type-related information.

• Blame completeness states that every blame error comes with
an overapproximation of the responsible parties. Three of the
four blame-sound semantics also satisfy blame completeness.
Forgetful can be modified to satisfy this property. The Erasure
strategy trivially fails blame completeness. And the Transient
strategy fails because it has no way to supervise untyped values
that flow through a typed context.

Table 2 points out, however, that the weakest strategies are the only
ones that do not require wrapper values. Wrappers impose space

106

Table 2: Technical contributions
N . C . F . T h A . E

type soundness 1 1 1 s† 1 0
complete monitoring 3 3 5 5 5 5

blame soundness 3 3 3 heap 3 ∅
blame completeness 3 3 5‡ 5 3 5

no wrappers 5 5 5 3 5 3

† note that T is bisimilar to A (theorem 4.5.31)
‡ satisfiable by adding A-style trace wrappers, see appendix

costs, time costs, and object identity issues [57, 94, 114], but seem
essential for strong mixed-typed guarantees. Perhaps future work can
find a way to satisfy additional properties without using wrappers.

5
S H A L L O W R A C K E T

The high costs of deep types and the weak guarantees of shallow
types motivate a compromise. In a language that supports both, pro-
grammers can mix deep and shallow types to find an optimal tradeoff.
This chapter presents the first half of the compromise, namely, a shal-
low semantics for Typed Racket. By default, Typed Racket provides
deep types via the natural semantics. My work brings the transient
semantics to the Typed Racket surface syntax.

Henceforth, Deep Racket refers to the original, natural implemen-
tation of Typed Racket and Shallow Racket refers to its transient im-
plementation. Typed Racket refers to the common parts: the surface
language and the type system.

Transient is a promising companion to Natural because it pursues
an opposite kind of implementation. Whereas natural eagerly en-
forces full types with guard wrappers, transient lazily checks only
top-level shapes. The lazy strategy means that transient does not
need wrappers, which removes the main source of natural overhead.
Transient can also run without blame, removing another form of run-
time cost. By contrast, simply removing blame from natural changes
little because blame information tags along with the guard wrappers.
To fully benefit from removing blame, Natural needs a new strategy
for allocating wrappers in the first place.

Adapting the theory of transient [115] to Typed Racket required
several generalizations and insights (chapter 5.1). In the course of
this work, I adapted the transient heap-based blame algorithm but
identified several challenges that make it impractical (chapter 5.2).
The final implementation takes care to reuse large parts of Typed
Racket (chapter 5.3).

The performance of Shallow Racket is typically an improvement
over Deep Racket, but both semantics have distinct strengths (chap-
ter 5.4). Transient always adds overhead relative to untyped Racket,
but is the safer bet for mixed-typed programs. Natural has better
performance in programs with large chunks of typed code, and sur-
passes untyped Racket in many cases. Whether Shallow Racket can
ever run faster than untyped code is an open question.

5.1 theory

Vitousek et al. [115] present a first transient semantics. This seman-
tics communicates the key ideas behind transient and the behavior of
Reticulated Python, but four characteristics make it unsuitable for a

107

108

transient implementation in Racket. It deals with a simpler language
of static types; it includes a dynamic type; it does not include a sub-
typing relation; and its type checker is intertwined with the completion
pass that rewrites typed code. This section outlines the design of a
suitable model and its properties.

5.1.1 More-Expressive Static Types

The main design choices for Shallow Racket concern the run-time
checks that enforce types. In terms of the model, there is a rich lan-
guage τ of static types and the problem is to define a type-shape
interpretation bτc for each. A shape must be decidable; for example,
bInt⇒ Intc = Int⇒ Int is unacceptable without a predicate that can
decide whether an untyped function always returns an integer when
applied to an integer. Beyond decidability, type-shapes should be
fast to test and imply useful properties. Shape soundness should be
a meaningful property that helps a programmer debug and enables
shape-directed optimizations.

The original transient model suggests that type-shapes must be de-
cidable in constant time [115]. This model contains type constructors
for only reference cells and functions, both of which are easily recog-
nized in a dynamically-typed language. Reticulated, however, does
not follow the constant-time suggestion in order to express object
types. The type-shape for an object with N fields/methods checks
for the presence of each member. Thus, the cost is linear in the size
of an object type.

Shallow Racket includes additional linear-time shapes to support
Typed Racket’s expressive types with meaningful run-time checks.
Some are linear in the size of a type; others are linear in the size of
incoming values. In general, the goal is to enforce full constructors.
The type-shape for a function checks arity; for example, the types
(Int⇒ Nat) and (Int Int⇒ Nat) have different shapes. The shape for
a vector with a fixed number of elements checks length. And the
shape for a list checks for a null-terminated sequence of pairs. Not
all types correspond to value constructors, though. These amorphous
type connectives [18, 19] call for recursive interpretations. For example,
bτ0 ∪ τ1c = bτ0c ∪ bτ1c and b∀ α0. τ0c = bτ0c provided bτ0c does not
depend on the bound variable. Type variables have trivial shapes in
other contexts, bα0c = >. Chapter 5.3.1 goes into more detail about
the implementation.

5.1.2 Removing Type Dynamic

Reticulated Python provides a dynamic type in the micro gradual
typing tradition. Consequently, the type system approves any elim-
ination form on a dyn-typed expression and depends on a run-time

5.1 109

With Dyn

Γ0 ` e0 : τ0 e′0 Γ0 ` e1 : τ1 e′1
τ0 B τ2⇒τ3

Γ0 ` e0 e1 : τ3 check{τ3} ((cast{(τ2⇒τ3)} e′0) (cast{τ2} e′1))

Without Dyn

Γ0 ` e0 : τ2⇒τ3 e′0 Γ0 ` e1 : τ2 e′1
Γ0 ` e0 e1 : τ3 check{τ3} (e′0 e′1)

Figure 46: Transient completion rules for an application with a dy-
namic type (top) and without (bottom). Both rules insert run-time
shape checks. The micro rule depends on a type coercion (B) meta-
function to allow down-casts from the dynamic type [115].

check to ensure that down-casts from the dynamic type work out.
Typed Racket does not have a dynamic type; instead it adds run-time
tools so that a non-dynamic type system can make assumptions about
untyped input. Using this macro approach, only a handful of typing
rules need to deal with untyped values.

The differences between the dynamic (micro) and non-dynamic
(macro) typing rules have implications for transient run-time checks.
In the original model, the evaluation of any expression could bring
a dynamically-typed value into a typed context. For example, the
application (f 42) type checks when f has the dynamic type; a run-
time check must test whether the value of f is a function. In a non-
dyn model, only boundaries and elimination forms can introduce an
untyped value. An application (f 42) can only type check when f
is a function. Figure 46 illustrates the difference by contrasting the
transient checks needed for a function application. On the top, the
dynamic approach requires three run-time checks in the worst case:
two checks in case the function and argument are dynamically-typed,
and one to validate the shape of the result. On the bottom, only one
check is needed because the function and argument are certain to
have a correct, non-dyn shape.

Note: Adding blame to a non-dynamic language adds the need for
an additional blame-map operation in figure 46, but no additional
checks. The blame map potentially needs an update because the ar-
gument flows in to the function. There is no need for a check because
the argument has a non-dynamic type.

Other rules can be simplified in a similar fashion. The benefits
are two-fold: non-dyn programs have fewer run-time checks to slow
them down, and programmers have fewer places to search if a pro-
gram manifests a boundary error.

110

;; (-> Real Real (U 'undef Real))

(define (divide n0 n1)

 (if (zero? n1)

 'undef

 (/ n0 n1)))

Figure 47: Untyped division function with two kinds of out-
put. A typical gradual language without subtyping can only over-
approximate the result with type dynamic.

5.1.3 Adding Subtyping

A type system for untyped code must either include a subtyping judg-
ment or force programmers to rewrite their data definitions. Rewrit-
ing takes time and invites mistakes, therefore the migratory typing
perspective demands a subtyping judgment.

The dynamic type is not a replacement for subtyping because it is
an imprecise catch-all. For example, the untyped divide function in
figure 47 either divides two numbers or returns the symbol ’undef
if the divisor is zero. Typed Racket lets a programmer express this
union of two base types and subtyping justifies the code. By contrast,
the dynamic type can type the code but asks callers to be ready for
any possible return value.

Adapting transient to include subtyping is therefore an essential
task for Shallow Racket. The addition is straightforward, but reveals
a surprising distinction between boundary types and use-site types.
Transient with subtyping may miss certain type mistakes declared
at a boundary because its run-time checks are based on elimination
forms. If a value goes through an upcast, then transient checks may
not test the full type. Figure 48 illustrates the issue using list types.
The typed function nat-product expects a list of non-negative inte-
gers and sends the list through an upcast to an int-product function
that multiplies the list elements. Because of the upcast, there is a
run-time check that (first is) returns an integer. There is no check
that list elements are natural numbers, and so when untyped code
sends an even-length list of negative numbers across the boundary,
transient does not detect a mistake.

5.1.4 From Elaboration to Completion

Vitousek et al. [115] intertwine typing and transient checks in a type-
elaboration judgment. The combination is a good fit for an imple-

5.1 111

(: nat-product (-> (List Nat Nat) Nat))

(define (nat-product nats)

 (assert (product nats) natural?))

(: product (-> (List Int Int) Int))

(define (product ints)

 (* (first ints) (second ints)))

(nat-product '(-6 -4))

Figure 48: An upcast hides a type boundary mismatch from transient.

mentation because check-insertion depends on static types, and one
pass over the program is more efficient than two. For the theory,
however, it is better to keep surface typing separate from a second
completion [52] pass that inserts transient checks

In the model of Shallow Racket, completion is a judgment () that
transforms a well-typed surface term to a term with transient checks.
The goal is to insert enough checks to create a target-language term
with a similar type.

theorem sketch (completion correctness)
If Γ ` e0 : τ0 then Γ ` e0 : τ0 e1 and Γ `s e1 : bτ0c.
Lemma 6.1.4 adapts the theorem sketch to a model.

The first benefit of this theorem is that it rules out nonsensical com-
pletions. The surface typing judgment (`) establishes basic proper-
ties that a sensible completion must preserve. By contrast, a type
elaboration that converts all surface terms to the integer 42 satisfies
every theorem used to validate the original transient because elabora-
tion is the only method for analyzing the surface syntax [115]. (This
meta-theoretic lapse made it difficult to adapt transient to a new lan-
guage of types.)

Second, the clear requirement makes it easier to adapt the idea of
transient to a new language. If the language has its own surface-
level typing and type-to-shape metafunction (b·c), then completion
correctness theorem guides the next steps.

Third, the separation encourages research on better completions
and target-level typings. The challenge is to use as few checks as
possible to build the target term. For example, suppose the variable
xy points to a pair of numbers and consider the expression (+ (car

xy) (car xy)). The completion for Shallow Racket produces the
following term:

112

(+ (check Num (car xy)) (check Num (car xy)))

Racket guarantees left-to-right evaluation, however, so the second
check can never fail. An improved completion would eliminate this
check, other flow-dominated checks, and potentially many others.

5.2 work-in-progress : blame

Blame is an important part of a migratory typing system because it
strengthens the key weakness of migratory types. Static types guar-
antee that certain errors cannot occur at run-time. Migratory types
are weak because they cannot offer the same promise. Errors can
occur just about anywhere in typed code. With blame, however, type-
mismatch errors come with an action plan for debugging. A program-
mer can follow the blame information to attempt a fix.

The usefulness of such an action plan depends on the blame strat-
egy. The current-best algorithm for transient, from Vitousek et al.
[115], blames a set of boundaries. The set is unsound and incomplete
in the technical sense of chapter 4, but one would expect that it is
more useful than no information.

Early experience with blame in Shallow Racket, however, has iden-
tified two significant challenges. First, scaling the original blame al-
gorithm to Typed Racket raises questions about its accuracy. Second,
transient blame has a tremendous performance cost. This section
explains the challenges; performance concerns are deferred to chap-
ter 5.4.4. Overall, I do not recommend the current blame algorithm
for use in future implementations of transient.

5.2.1 Basics of Transient Blame

The transient blame algorithm uses a global blame map to connect
run-time values to source-code boundaries. This blame map uses
heap addresses as keys. Every non-primitive value in a program has
a heap address and potentially a blame map entry. The values in a
blame map are collections of entries. There are two kinds of entry in
such a collection:

1. A boundary entry combines a type with a source location. When-
ever a value crosses one of the static boundaries between typed
and untyped code, the blame map gains a boundary entry. For
example, if the function f flows out of typed code:

(define (f (n : Natural)) : String

)

(provide f)

then the blame map gains an entry for f that points to the type
(-> Natural String) and a source location.

5.2 113

2. A link entry combines a parent pointer and an action. The par-
ent refers to another blame map key. The action describes the
relation between the current value and its parent. Suppose the
function f from above gets applied to an untyped value v. As
the value enters the function, the blame map gains a link entry
for v that points to f with the action ’dom, to remember that the
current value is an input to the parent.

If a transient run-time check fails, the blame map can supply a
set of boundaries by following parent pointers up from the failed
value. Each parent pointer is partially responsible for the mismatched
value. Each boundary at the root of all parent paths contains possibly-
unchecked type assumptions. The programmer can begin debugging
by reviewing these type assumptions.

Vitousek et al. [115] suggest a further refinement to this basic idea.
They filter the set of typed boundaries using the failed value and the
action path that led to the boundary. The action path gives a list of
selectors to apply to the boundary type, ending with a smaller type.
Checking this type against the bad value helps rule out irrelevant
boundaries. For example, if the bad value is an integer and one of the
boundary types expects an integer, then that boundary is not worth
reporting.

In summary, the success of the blame map rests on three principles:

• every type boundary in the program adds one boundary entry
in the map for each value that crosses the boundary at runtime;

• every elimination form adds a link entry with a correct parent
and action; and

• there is a run-time way to test whether a value matches part of
a boundary type.

These principles are relatively easy to satisfy in a model language,
but pose surprising challenges for a full language.

5.2.2 Trusted Libraries Obstruct Blame

A migratory typing system must be able to re-use host language li-
braries. Racket, for example, comes with a list library that provides
a map function. Both Deep Racket and Shallow Racket can re-use this
function by declaring a static type:

map : (All (A B) (-> (-> A B) (Listof A) (Listof B)))

Furthermore, both can import map at no run-time cost. Deep can trust
that the implementation completely follows the type and Shallow—
without blame—can trust that map always returns a list.

For Shallow with blame, however, trusted re-use leads to imprecise
blame. Figure 49 illustrates this phenomenon with a tiny example.

114

(define (use-map (nums : (Listof Number)))

 (define nums2 (map (λ(x) x) nums))

 (+ 1 (first nums2)))

(use-map (list "A" 1)) Blame error?

Figure 49: Unless map updates the blame map, transient cannot point
to any boundaries when (first nums2) fails to return a number.

The typed function at the top of this figure expects a list of numbers,
applies a trivial map to the list, and lastly finds a bad element in the
mapped list. Transient blame should point back to the boundary
between the typed function and the untyped list but cannot if map

does not update the blame map. The solution is to register map in the
blame map with a boundary entry and add link entries before and
after every call. Unfortunately, the cost of this extra bookkeeping can
add up.

5.2.3 Complex Flows, Tailored Specifications

Getting blame right for the map function requires careful bookkeeping.
The result list must have a link entry that points to the input list.
Additionally, the input function should point to this input list in case
it receives a bad result.

Blame in Shallow Racket depends on literal syntax to decide when
complex reasoning is needed. The original algorithm uses the same
method; primitive operations have tailored bookkeeping and other
function applications create link entries in a standard way [115].

Obviously, the syntactic approach is brittle. Renaming map leads
to misleading blame errors. The same goes for applications of an
expression instead of a literal identifier. Improving precision is an
open challenge.

5.2.4 Multi-Parent Paths

A link entry points to one parent. Several functions, however, create
data with multiple parents. One basic example is an append function
on lists:

(append xs ys)

The result list contains the elements of both inputs. At a minimum,
there should be two parents to blame if something goes wrong.

5.2 115

Action Template Interpretation
(dom n) n-th argument to a function
(cod n) n-th result from a function
(case-dom (k n)) n-th argument (of k total) to an

overloaded function

(object-method (m n)) n-th argument to method m of an
object

list-elem Element of a homogeneous list
list-rest Tail of a list
(list-elem n) Element of a heterogeneous list,

e.g. (List Boolean Number String)

hash-key Key of a hashtable
hash-value Value of a hashtable
(struct-field n) n-th field of a structure
(object-field f) Field f of an object type
noop No action; direct link to parent

Figure 50: Sample blame actions in Shallow Racket.

A second, more complicated example is a hash-ref function that
may return a default value:

(hash-ref h k d)

If the table h has a binding for the key k, then the result comes from
the table. Otherwise, the result is computed by the default thunk.

A blame map clearly needs conditional and multi-parent paths to
give precise error outputs. But the cost of building and traversing
the additional link entries may be high. Thus we leave such paths to
future work.

5.2.5 Expressive Link-Entry Actions

A check entry in the blame map has two parts: a parent pointer and
an action. The action informs the type-based filtering. Given a type
for the parent, the action says what part of the type is relevant to the
current value.

The model for Reticulated comes with three actions: Res, Arg, and
Deref. These help traverse simple function types (τ ⇒ τ) and ref-
erence cells; for example, starting from the parent type ref Int and
applying the Deref action focuses on the element type Int. The imple-
mentation of Reticulated adds one action, Attr, and generalizes Arg

with an index. Starting from the following Reticulated type:

Function([int, str], float)

116

the action [Arg, 1] focuses on the type str of the second positional
argument. Similarly, the action [Attr, "foo"] focuses on the member
"foo" of an object type.

Despite the extensions, the action language in Reticulated suffers
from imprecision in two ways. First, it has no way to refer to certain
parts of a type. If a function uses optional or keyword arguments,
then Reticulated has no way to test whether the type is irrelevant;
such types cannot be filtered from the blame output. Second, it may
conflate types. The action Deref seems to apply to any data struc-
ture. If a nested list value crosses the boundaries List(List(int))

and List(Dict(str, str)), and then an elimination returns a string
where an int was expected, a plain Deref incorrectly filters out the
Dict type. The developer needs to see both types because neither
matches the actual nested list value.

Shallow Racket thus comes with an extensive action language to
prevent imprecision. Figure 50 presents a representative sample of
actions and a brief description of each. Function actions must han-
dle multiple arguments, multiple results, methods, and overloadings.
Data structures have tailored actions. Lists, for example, require three
kinds of actions: list-elem to dereference a simple list, list-rest to
move to the tail of a list keeping the same type, and an indexed ele-
ment action for fixed-sized lists with distinct types in each position.
Finally, the noop action adds a direct link to track a copy from one
data structure to another (vector-copy!) or a wrapper.

5.2.6 Types at Runtime

Transient blame needs types at runtime, or a close substitute, to filter
irrelevant boundaries. These runtime types must have selectors for
each possible action and an interpretation function that checks the
shape of a value against the shape of a type.

Shallow Racket’s runtime types are a revived version of its static
types. During compilation, static types get serialized into a chain of
type constructor calls. After a runtime error occurs, Shallow Racket
re-evaluates the constructor definitions and uses these constructors
to revive types. This revival approach re-uses at least 4,000 lines of
Typed Racket to good effect: roughly 3,000 lines of constructor and
selector definitions, and 1,000 lines that turn a type into a transient
check. It also handles type aliases nicely. The static environment
knows all relevant aliases and can serialize them along with the type.

Revival unfortunately fails for generative structure types. The run-
time type and the static type are two different entities, and so Shallow
Racket is unable to parse the serialized types at run-time. If parsing
were to succeed, finding the correct predicate for a generative type is
a separate challenge. At compile-time, it suffices to generate a correct

5.3 117

Expand
Typecheck

Kernel

Generate

Contracts

Type-Based

Optimizer

Insert Shape Checks

Figure 51: Stages in the Deep Racket compiler. Shallow can re-use
the expander and type checker in full, and parts of the optimizer, but
must replace contract generation with a rewriting pass.

identifier. At run-time, transient needs to evaluate a correct identifier
in the right run-time context to find the predicate.

A different approach may be able to solve the generative-types
problem. A related question, though, is whether transient is better
off with a different method of filtering.

5.3 implementation

Shallow Racket is an extension of the (Deep) Typed Racket codebase.
The goal is not to create a fork, but rather to adapt the existing com-
piler and provide a uniform experience to programmers.

Figure 51 presents a high-level organization diagram of the Typed
Racket compiler [106]. Source code goes through a macro-expansion
step at the start. The type checker operates on expanded code; it vali-
dates the program and attaches type annotations as metadata for later
passes. Third, the compiler turns boundary types into higher-order
contracts. The last major step is the type-driven optimizer, which
uses type annotations to remove unnecessary runtime checks.

Shallow Racket can re-use the expander and type checker as-is. The
“contract” and “optimize” steps require changes. Contract generation
must create transient checks rather than deep higher-order contracts
(chapter 5.3.1). Additionally, the contract pass must rewrite all typed
code with transient checks (chapter 5.3.2). The “optimize” pass must
be restricted because it cannot rely on full types (chapter 5.3.3).

The implementation effort brought a few surprises. Challenges
with universal types and occurrence types cause the current Shallow
Racket to reject some well-typed code (chapter 5.3.2). Deep Racket re-
jects the same programs. The experience led to several improvements
to Typed Racket, Racket, and libraries (chapter 5.3.4).

5.3.1 Types to Shapes

Shallow Racket compiles static types to type shape checks. Each check
enforces first-order properties of a type constructor. In general, a

118

successful check means that all well-typed operations should succeed
at run-time. For example, the type (Pairof String String) uses the
Pairof type constructor; its shape check, pair?, accepts any kind of
pair. A successful check (pair? v) means that the operations (car v)

and (cdr v) are well-defined, and nothing more. Because these two
operations are the only elimination forms for the Pairof constructor,
the shape meets its goal.

Types that support many first-order properties have more complex
shape checks. For example, an object type comes with field and
method names. The shape check must ensure that incoming objects
have the correct members.

Below are several more example types, chosen to illustrate the va-
riety and challenges of extending transient. Each type comes with a
shape that illustrates the implementation and a brief discussion. Ac-
tual shapes in the implementation do not use contract combinators
such as and/c for performance.

• τ = (Listof Real)

bτc = list?

The type represents lists of real numbers. The shape accepts
any proper list, but not improper lists such as (cons 1 (cons

2 3)). The run-time cost depends on the size of input values
in the worst case, but pairs are immutable and the predicate
list? caches its results. The optimizer uses the shape to rewrite
getters.

• τ = (List Real Real)

bτc = (and/c list? (λ(v) (= 2 (length v))))

Represents a list with exactly two numbers. The shape checks
lengths. Doing so lets the optimizer change (list-ref v 1) to
(unsafe-list-ref v 1).

• τ = (Rec Chain (U Null (Pairof Chain Real)))

bτc = (or/c null? pair?)

The recursive type is isomorphic to (Listof Real), but enforced
with a more primitive check. In general, built-in lists have the
only shape whose cost depends on the size of input values.

• τ = (Vector Real)

bτc = (and/c vector? (λ(v) (= 1 (vector-length v))))

Represents a vector that contains one number. The shape checks
length; the optimizer can use this fact.

• τ = (Mutable-Vectorof Real)

bτc = (and/c vector? (not/c immutable?))

Represents a mutable vector with any number of elements. Vec-
tors can also be immutable; the parent type Vector covers both.

5.3 119

The optimizer does not look at mutability, but the type checker
does to raise static type errors.

• τ = (Weak-HashTable Symbol Any)

bτc = (and/c hash? hash-weak?)

Represents a mutable hash table whose keys do not inhibit the
garbage collector.

• τ = (U Real String)

bτc = (or/c real? string?)

Untagged union. The shape accepts either a real number or
a string; these predicates are elimination forms for the union
because of occurrence typing [102, 105]. Wider unions, with N
types inside, have shapes with N components.

• τ = (Syntaxof String)

bτc = syntax?

Represents a syntax object that contains a string. The shape
checks for a syntax object.

• τ = Integer

bτc = exact-integer?

Represents a mathematical integer. The shape checks for exact-
ness; an inexact integer such as 4.1 is not allowed.

Other numeric types require larger checks for additional prop-
erties, for example Negative-Integer looks for an exact integer
that is less than zero.

To the type system, numeric types are wide unions. Shape en-
forcement flattens these unions wherever possible.

• τ = (Refine [n : Integer] (= n 42))

bτc = (and/c exact-integer? (=/c 42))

Represents an integer that is equal to 42.

Refinement types attach a predicate to a static type. Predicates
are limited to a linear arithmetic. The shape check uses the
whole predicate.

• τ = (Class (field [a Natural]) (get-a (-> Natural)))

bτc = (contract-first-order (class/c (field a) get-a))

Represents a class with one field and one method. The shape
depends on the racket/contract library to check simple prop-
erties of class shape. Object types have similar checks, using
object/c instead.

• τ = (-> Real String)

bτc = (arity-includes/c 1)

Represents a function with one required argument. The shape
checks arity.

120

• τ = (-> Real * Real)

bτc = (arity-includes/c 0)

Represents a function that accepts any number of positional ar-
guments. The shape looks for functions that can accept zero
arguments, but it does not check whether they accept more.

• τ = (case-> (-> Real Real) (-> String Real String))

bτc = (and/c (arity-includes/c 1) (arity-includes/c 2))

Represents an overloaded function. The shape checks both ari-
ties.

Functions can also have optional, keyword, and optional key-
word arguments. The shapes for such functions check that the
keywords are accepted.

• τ = (All (A) (Box A))

bτc = box?

Represents a polymorphic mutable cell. The shape checks for
a cell. If typed code wants to extract a value from the cell, it
must instatiate the polymorphic type. The instantiation pro-
vides a shape to check the box contents; to ensure soundness,
such checks appear at every location where typed code reads
from the box.

• τ = (All (A) A)

bτc = none/c

Represents a value that can be instantiated to any type. The
shape rejects all values.

This type could be allowed with the trivial shape any/c in an im-
plementation that checks the result of type instantiation, along
the lines of New et al. [74]. Shallow Racket does nothing at
instantiation, and therefore rejects the type to prevent unsound-
ness (figure 54).

5.3.2 Inserting Shape Checks

Shallow Racket rewrites typed code to include transient shape checks.
Checks guard the positions where an untyped value might appear
(chapter 4.5.8); in particular:

• at the source-code boundaries to untyped code;

• around elimination forms;

• and at the entry of every function.

Boundaries clearly need protection. If typed code expects a number
and imports a value from untyped code, the value could have any
shape and therefore needs a check.

5.3 121

(define (sum-list (nums : (Listof Real))) : Real

 (check! list? nums)

 (for/fold ([acc 0])

 ([n (in-list nums)])

 (check! real? n)

 (+ acc n)))

Figure 52: A shallow-typed function defended with transient checks.

(: array-append (-> (Listof Array) Array))

(define (array-append arrs [k 0])

 ;; append arrays along axis k

)

Figure 53: Type prevents callers from sending an optional argument,
but the function body can use the default value.

Elimination forms need protection for the same reason, but are an
over-approximation. Figure 52 provides a concrete example with a
for loop that sums up a list of numbers. Every step of the loop first
checks the current list element. If the list came from untyped code,
then the checks are clearly needed. The list might come from typed
code, though, in which case the checks can never fail.

Figure 52 also contains a function check. The inputs to every typed
function are checked to validate the type assumptions in the function
body. These checks might be unnecessary if the function never es-
capes to untyped code, but escapes are hard to detect because a typed
function can escape as an argument to a combinator (map sum-list

nss) or via a macro-introduced reference.

Current Limitations

The current implementation attaches transient checks at two kinds of
syntax: boundaries and run-time elimination forms. This approach
does not suffice to protect all types, thus some well-typed programs
are currently rejected to ensure soundness. Deep Typed Racket cur-
rently rejects these programs for the same reason.

Unrestricted universal types are one problem. If the shape bτc of
a universally-quantified type ∀ α. τ depends on the bound variable,
then Shallow Racket rejects the program (figure 54). The trouble is

122

(require/typed racket/base

 ;; import `cdr`, assume type is correct,

 ;; depend on run-time check to catch nonsense

 (cdr (All (A) A)))

(define fake-str : String

 (inst cdr String))

(string-length fake-str)

Figure 54: If the shape of a universal type depends on the bound
variable, then transient must either reject the program or treat type
instantiation as an elimination form.

(require/typed racket/base

 (values (-> Any Any : String)))

(define x : Any 0)

(define fake-str : String

 (if (values x)

 (ann x String)

 (error 'unreachable)))

(string-length fake-str)

Figure 55: Occurrence types may change the type environment in
each branch of an if statement. Transient must either check the
changes or disallow occurrence types on untyped functions.

5.3 123

Topic Shape-Safe?
apply 3 Deforest map-reduce exprs.
box 3 Speed up box access.
dead-code 5 Remove if and case-lambda branches.
extflonum 3 Rewrite math for extended floats.
fixnum 3 Rewrite math for fixnums.
float-complex 3 Unbox & rewrite complex float ops.
float 3 Rewrite math for normal floats.
list 3 Speed up list access and length.
number 3 Rewrite basic numeric operations.
pair 5 Speed up (nested) pair access.
sequence 3 Insert type hints for the runtime.
string 3 Speed up string operations.
struct 3 Speed up struct access.
vector 3 Speed up vector access.

Figure 56: TR optimizations and whether Shallow can re-use them.

that type instantiation can change the shape of such types, but type
instantiation is not currently a run-time elimination form.

Occurrence types at a boundary are a second problem. A program
cannot assign an occurrence type to an untyped value, as in figure 55.
This code uses require/typed to import an untyped function with
a nonsensical occurrence type; it passes the type checker, but the
compiler raises an error during contract generation because it cannot
enforce the occurrence type. Proper enforcement requires rewriting
both branches of the conditional to include casts based on the occur-
rence type. In this case, a check must ensure that x is a string.

5.3.3 Optimizer

Typed Racket uses static types to compile efficient code [89, 90, 91].
To give a basic example, a dynamically-typed sum (+ n0 n1) can
be rewritten to add its inputs without first confirming that they are
numbers. In principle, such optimizations may rely on full types.
These “deep” optimizations are not safe for Shallow Racket because
it only guarantees the top type constructor.

Figure 56 lists all optimization topics and shows, suprisingly, that
only two are unsafe for shallow types. The dead-code pass remove
type-inaccessible branches of an overloaded function. With deep
types, run-time contracts make these branches inaccessible. Shallow
types allow raw functions to flow to untyped code, and therefore the
branches are not sealed off by a wrapper. The pair pass depends on

124

kind merged? pull request
1 bugfix 3 racket/htdp #98

2 bugfix 3 racket/pict #60

3 bugfix 3 racket/racket #3182

4 bugfix racket/typed-racket #926

5 bugfix 3 racket/typed-racket #919

6 bugfix 3 racket/typed-racket #916

7 bugfix 3 racket/typed-racket #914

8 bugfix 3 racket/typed-racket #912

9 bugfix 3 racket/typed-racket #923

10 bugfix 3 racket/typed-racket #921

11 bugfix 3 racket/typed-racket #918

12 bugfix 3 racket/typed-racket #913

13 bugfix 3 racket/typed-racket #884

14 bugfix 3 racket/typed-racket #855

15 bugfix 3 racket/typed-racket #612

16 bugfix 3 racket/typed-racket #600

17 enhancement 3 racket/typed-racket #927

18 enhancement 3 racket/typed-racket #925

19 enhancement 3 racket/typed-racket #911

20 enhancement 3 racket/typed-racket #907

21 enhancement racket/typed-racket #917

Figure 57: Pull requests inspired by work on Shallow Racket.

full types to rewrite nested accessors, such as cdar, to versions that
assume a deep pair structure.

Other passes are re-used in Shallow Racket. The benefit of these
optimizations is sometimes enough to outweigh the cost of transient
checks (chapter 5.4). Certain re-used passes, though, force design
decisions. The apply pass directly applies a typed function to the
elements of a list. This transformation is shape sound because all
shallow-typed functions check their inputs, whether or not they es-
cape to untyped code. The list and sequence passes depend on the
O(n) shape check for list types. The unboxing in the float-complex

pass is only safe by virtue of a conservative escape analysis.

5.3.4 Bonus Fixes and Enhancements

The development of Shallow Racket led to several improvements in
other Racket libraries. Debugging sessions occasionally revealed bugs
in existing code, and the integration of Shallow and Deep Racket
suggested enhancements for the latter. Figure 57 tabulates these fixes

https://github.com/racket/htdp/pull/98
https://github.com/racket/pict/pull/60
https://github.com/racket/racket/pull/3182
https://github.com/racket/typed-racket/pull/926
https://github.com/racket/typed-racket/pull/919
https://github.com/racket/typed-racket/pull/916
https://github.com/racket/typed-racket/pull/914
https://github.com/racket/typed-racket/pull/912
https://github.com/racket/typed-racket/pull/923
https://github.com/racket/typed-racket/pull/921
https://github.com/racket/typed-racket/pull/918
https://github.com/racket/typed-racket/pull/913
https://github.com/racket/typed-racket/pull/884
https://github.com/racket/typed-racket/pull/855
https://github.com/racket/typed-racket/pull/612
https://github.com/racket/typed-racket/pull/600
https://github.com/racket/typed-racket/pull/927
https://github.com/racket/typed-racket/pull/925
https://github.com/racket/typed-racket/pull/911
https://github.com/racket/typed-racket/pull/907
https://github.com/racket/typed-racket/pull/917

5.4 125

and enhancements. The third column shows that all but two requests
are merged. The final column contains links with more details.

Most improvements came about through transient run-time checks.
During compilation, transient relies on types embedded in an inter-
mediate representation to generate checks. Missing types and im-
precise types caused problems at this completion step; on occasion,
the problems were due to Typed Racket bugs. At run-time, tran-
sient sometimes found incorrect types with its checks. The HTDP fix
offers a simple example (racket/htdp #98). A library-provided func-
tion promised to return a unit value and actually returned a boolean.
Transient caught the unsoundness.

The fix to Racket is especially interesting (racket/racket #3182).
It came about because some shallow-typed programs failed with a
strange error message:

Expected a real number, got #<unsafe-undefined>

These programs were fully-typed, but somehow a run-time value con-
tradicted the type checker without causing trouble in the Deep seman-
tics. Worse, this sentinel undefined value did not appear in the source
code. The problem was due to a disagreement between core Racket
and Typed Racket about how to encode a method with optional ar-
guments as a function with a fixed-length argument list. Racket used
an extra run-time check; Typed Racket thought the check was redun-
dant. The fix was indeed to change Racket, which means that pre-fix
versions of Typed Racket are a hair’s breadth from a dangerous un-
soundness. Their saving grace is that the type optimizer does not
transform methods; if it did, then user code would receive unsafe-
undefined values because of the incorrect type assumption.

5.4 performance

Shallow Racket sacrifices static guarantees for a wrapper-free imple-
mentation. The loss of wrappers implies a loss of full type soundness,
complete monitoring, and correct blame. As compensation, shallow
needs to demonstrate improved performance.

This section applies the method from chapter 3 to evaluate Shallow
Racket on the gtp benchmarks (version 6.0). The granularity of the ex-
periment is module-level, same as our Deep Racket experiment from
chapter 3.5. All data is from a dedicated Linux box with 4 physical
i7-4790 3.60GHz cores and 16GB RAM. The experiment uses Racket
v7.8.0.5 (7c90387) and Shallow Racket extends Typed Racket v1.12

(c074c93).

https://github.com/racket/htdp/pull/98
https://github.com/racket/racket/pull/3182
https://github.com/racket/racket/commit/7c903871bd8cb4bd32ed7188c180b5124f9bc201
https://github.com/bennn/typed-racket/commit/c074c9333e467cb7cd2058511ac63a1d51b4948e

126

Benchmark deep/untyped shallow/untyped
sieve 0.97 4.36

forth 0.65 5.21

fsm 0.54 2.38

fsmoo 0.88 4.28

mbta 1.63 1.69

morsecode 0.73 2.72

zombie 1.79 31.07

dungeon 0.99 4.97

jpeg 0.40 1.66

zordoz 1.35 2.73

lnm 0.64 1.06

suffixtree 0.69 5.51

kcfa 1.04 1.16

snake 0.96 7.67

take5 0.97 2.97

acquire 1.22 1.40

tetris 0.97 8.28

synth 0.96 4.07

gregor 0.98 1.53

quadT 0.99 7.22

quadU 0.79 7.14

Figure 58: Performance ratios (fully-typed vs untyped) for deep and
shallow types on the gtp benchmarks.

5.4 127

5.4.1 Performance Ratios

Figure 58 presents typed/untyped ratios for the benchmarks. The
middle column lists the overhead of fully-typed deep code relative to
the untyped configuration. The right column shows the overhead of
fully-typed shallow types.

Because these shallow types are implemented with the transient
semantics, one would expect them to run slower than deep types
because the latter has no overhead in completely typed programs. In-
deed, deep runs faster in every row and has a worst-case overhead
under 2x. Shallow typically does well, with overhead under 5x, but
a few benchmarks have larger slowdowns due to transient checks.
The worst is zombie, which suffers a 30x overhead due to the many
elimination forms that appear in one module. This module simulates
objects with functions and therefore contains several layers of indirec-
tion that all slow down with transient checks. A better completion
pass may be able to reduce this high cost; that said, the real-time cost
of this overhead in zombie is close to one second. The best-case bench-
mark for transient is lnm, which runs only slightly slower than the
fully-untyped configuration.

5.4.2 Overhead Plots

Figures 59, 60, and 61 plot the overhead of Deep and Shallow Racket.
As before, these plots show the proportion of D-deliverable configu-
rations for values of D between 1x and 20x.

Shallow types lead to a huge improvement, from over 20x down to
8x or lower, in nine benchmarks. With deep types, these benchmarks
suffer high overhead due to eager and wrapped checks. The wrapper-
free transient semantics removes the issue. Shallow improves on a
few other benchmarks and it does equally-well on almost all the rest.
The one exception is morsecode, which fares better with deep types.
Three characteristics account for the discrepancy: morsecode bound-
aries create few wrappers; the transient laziness does not end up
saving many checks; and the overhead of transient checks ends up
slowing down large chunks of typed code. Overall, Shallow Racket
lives up to its promise of better mixed-typed performance.

5.4.3 Exact Runtime Plots

Figures 62, 63, and 64 offer a different perspective on deep and shal-
low types. These exact runtime plots show how performance changes
as the number of type annotations in a benchmark increases. The left-
most column of each plot has one dot for each fully-untyped running
time. The right-most columns plot the fully-typed running times, and

128

sieve-7.8.0.5, sieve-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
4 confgurations

sieve-7.8.0.5 sieve-transient

forth-7.8.0.5, forth-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

forth-7.8.0.5 forth-transient

fsm-7.8.0.5, fsm-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

fsm-7.8.0.5 fsm-transient

fsmoo-7.8.0.5, fsmoo-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

fsmoo-7.8.0.5 fsmoo-transient

mbta-7.8.0.5, mbta-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

mbta-7.8.0.5 mbta-transient

morsecode-7.8.0.5, morsecode-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

morsecode-7.8.0.5 morsecode-transient

zombie-7.8.0.5, zombie-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

zombie-7.8.0.5 zombie-transient

Figure 59: Deep vs. Shallow (1/3).

5.4 129

dungeon-7.8.0.5, dungeon-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

dungeon-7.8.0.5 dungeon-transient

jpeg-7.8.0.5, jpeg-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

jpeg-7.8.0.5 jpeg-transient

zordoz-7.8.0.5, zordoz-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

zordoz-7.8.0.5 zordoz-transient

lnm-7.8.0.5, lnm-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

lnm-7.8.0.5 lnm-transient

suffxtree-7.8.0.5, suffxtree-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

sufxtree-7.8.0.5 sufxtree-transient

kcfa-7.8.0.5, kcfa-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
128 confgurations

kcfa-7.8.0.5 kcfa-transient

snake-7.8.0.5, snake-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
256 confgurations

snake-7.8.0.5 snake-transient

Figure 60: Deep vs. Shallow (2/3).

130

take5-7.8.0.5, take5-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
256 confgurations

take5-7.8.0.5 take5-transient

acquire-7.8.0.5, acquire-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
512 confgurations

acquire-7.8.0.5 acquire-transient

tetris-7.8.0.5, tetris-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
512 confgurations

tetris-7.8.0.5 tetris-transient

synth-7.8.0.5, synth-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
1,024 confgurations

synth-7.8.0.5 synth-transient

gregor-7.8.0.5, gregor-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
8,192 confgurations

gregor-7.8.0.5 gregor-transient

quadT-7.8.0.5, quadT-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16,384 confgurations

quadT-7.8.0.5 quadT-transient

quadU-7.8.0.5, quadU-transient

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16,384 confgurations

quadU-7.8.0.5 quadU-transient

Figure 61: Deep vs. Shallow (3/3).

5.4 131

sieve-7.8.0.5 64 points

sieve-7.8.0.5 sieve-transient

forth-7.8.0.5 256 points

forth-7.8.0.5 forth-transient

fsm-7.8.0.5 256 points

fsm-7.8.0.5 fsm-transient

fsmoo-7.8.0.5 256 points

fsmoo-7.8.0.5 fsmoo-transient

mbta-7.8.0.5 256 points

mbta-7.8.0.5 mbta-transient

morsecode-7.8.0.5 256 points

morsecode-7.8.0.5 morsecode-transient

zombie-7.8.0.5 256 points

zombie-7.8.0.5 zombie-transient

Figure 62: Exact Deep vs Shallow (1/3).

132

dungeon-7.8.0.5 512 points

dungeon-7.8.0.5 dungeon-transient

jpeg-7.8.0.5 512 points

jpeg-7.8.0.5 jpeg-transient

zordoz-7.8.0.5 512 points

zordoz-7.8.0.5 zordoz-transient

lnm-7.8.0.5 1,024 points

lnm-7.8.0.5 lnm-transient

suffxtree-7.8.0.5 1,024 points

sufxtree-7.8.0.5 sufxtree-transient

kcfa-7.8.0.5 2,048 points

kcfa-7.8.0.5 kcfa-transient

snake-7.8.0.5 4,096 points

snake-7.8.0.5 snake-transient

Figure 63: Exact Deep vs Shallow (2/3).

5.4 133

take5-7.8.0.5 4,096 points

take5-7.8.0.5 take5-transient

acquire-7.8.0.5 8,192 points

acquire-7.8.0.5 acquire-transient

tetris-7.8.0.5 8,192 points

tetris-7.8.0.5 tetris-transient

synth-7.8.0.5 16,384 points

synth-7.8.0.5 synth-transient

gregor-7.8.0.5 131,072 points

gregor-7.8.0.5 gregor-transient

quadT-7.8.0.5 262,144 points

quadT-7.8.0.5 quadT-transient

quadU-7.8.0.5 262,144 points

quadU-7.8.0.5 quadU-transient

Figure 64: Exact Deep vs Shallow (3/3).

134

Benchmark s.blame/untyped shallow/untyped deep worst-case
sieve out of memory 4.36 15.67

forth 41.54 5.21 4010.71

fsm timeout (>2210) 2.38 2.37

fsmoo 294.24 4.28 451.07

mbta 40.71 1.69 1.92

morsecode timeout (>251) 2.72 1.47

zombie 563.53 31.07 54.62

dungeon 84.68 4.97 14573.66

jpeg 45.92 1.66 23.16

zordoz 192.54 2.73 2.72

lnm 29.19 1.06 1.11

suffixtree timeout (>189) 5.51 31.17

kcfa 27.76 1.16 4.43

snake timeout (>1073) 7.67 11.84

take5 50.77 2.97 32.17

acquire 44.79 1.40 4.15

tetris timeout (>723) 8.28 11.71

synth timeout (>1436) 4.07 49.12

gregor 30.71 1.53 1.63

quadT 108.50 7.22 27.10

quadU 561.73 7.14 59.66

Figure 65: Performance ratios for Shallow Racket with blame and
Shallow without blame, and also the worst-case of Deep types. The
Shallow columns are for the fully-typed configuration; the Deep col-
umn uses the slowest configuration. The blame experiments ran on a
dedicated Linux machine with 16GB RAM for at most 10 minutes.

columns in between have data for every point at the same level of the
performance lattice.

In Deep Racket, mixing typed and untyped code can lead to signifi-
cant overhead. Points in the middle columns are for mixed configura-
tions, and can have high cost; zombie in particular slows down in the
middle. Points on the right columns, however, do not suffer. After
critical boundaries are typed, performance is often excellent.

In Shallow Racket, the trend is simple: adding types slows code
down. There is a linear, upward trend in every benchmark. As the
overhead plots anticipate, the linear cost is typically much lower than
the extremes of deep types.

5.4 135

5.4.4 Blame Performance

Figure 65 evaluates the overhead of Shallow Racket with blame en-
abled. The second column of this table measures the overhead of
blame on the fully-typed configuration. For comparison, the third col-
umn lists the overhead of the same configuration without blame, and
the fourth column lists the absolute worst-case of deep types. This
table reports only the fully-typed configuration for shallow because
this configuration contains the greatest number blame-map updates.
Configurations with fewer typed modules have syntactically fewer
locations that must touch the global map.

The data shows that blame adds tremendous overhead to Shallow
Racket. Six benchmarks fail to terminate within a generous 10-minute
limit. One benchmark, sieve, ends with an OS-level memory error
after consuming a huge chunk of a 16GB RAM pool. The rest run far
slower than shallow without blame.

Surprisingly, the fourth column shows that shallow blame costs
more than the worst case of Deep types in 18 benchmarks. Shallow
blame slows down every operation by a small factor and allocates
a small amount of memory for every value. These small costs add
up, even in our relatively short-running benchmarks. Deep is slowest
only in benchmarks that frequently send higher-order values across
boundaries; collapsible contracts may resolve these issues [29].

Our blame results are far less optimistic than the early report in
Vitousek et al. [115], which found an average slowdown on 2.5x and
worst-case slowdown of 5.4x on fully-typed configurations. For Shal-
low Racket benchmarks that terminate, the average slowdown from
blame is 32.04x and the worst-case is 78.67x. These different statistics
are due to two factors that let Reticulated insert fewer checks: the
chosen benchmarks and gradual type inference.

Regarding benchmarks, Vitousek et al. [115] use small programs
from the pyperformance suite. Three of the twelve benchmarks focus
on numeric computations; since the blame map does not track primi-
tive values, adding blame adds little overhead. Four others have since
been retired from the Python suite because they are too small, unreal-
istic, and unstable (pyperformance.readthedocs.io/changelog.html).
Among the remaining benchmarks, the overhead of blame appears
to increase with the size of the program. Larger Reticulated bench-
marks should run on par with Shallow Racket. For example, a Reticu-
lated variant of the sieve benchmark runs in about 40 seconds without
blame and times out after 10 minutes with blame enabled.

The type inference issue is subtle. Reticulated frequently infers the
dynamic type for local variables. Doing so is type-sound and lets
Reticulated skip many runtime checks and blame-map updates; how-
ever, the programmer gets less precise type and blame information.

https://pyperformance.readthedocs.io/
https://pyperformance.readthedocs.io/changelog.html

136

For example, the following Python snippet creates a list of numbers,
mutates the list, and reads the first element.

def set(xs):

 xs[0] = "X"

 return

def main():

 nums = list(range(3))

 set(nums)

 return nums[0] < 1

main()

TypeError: unorderable types: str() < int()

Reticulated infers the dynamic type for the list nums and does not
check that nums[0] returns a number. Running this program leads
to a Python exception about comparing strings and integers. For
the benchmarks, the lack of checks leads to a faster running time,
especially in programs that incrementally update local variables in a
loop. If updates lead to the dynamic type, then run-time operations
are free of shape checks.

6
D E E P A N D S H A L L O W, C O M B I N E D

This chapter validates the central point of my thesis: that deep and
shallow types can be combined in a companion language for Racket,
and the combination is an improvement over either one alone. First,
I prove that deep types via natural and shallow types via transient
can coexist in a formal model. The two semantics can interoperate
without changing the formal properties of either one (chapter 6.1).
Second, I report challenges that arose combining Deep Racket and
Shallow Racket in a single implementation (chapter 6.2). Overall, the
combined implementation has clear benefits (chapter 6.3). Program-
mers are better off with a choice of deep guarantees and transient
performance. Combining the two semantics in one program can fur-
ther improve performance. And, surprisingly, the addition of shallow
types can express programs that Deep Racket currently cannot.

A downside of the combination is that natural and transient cannot
easily share the results of their type checks. The reason is simple:
transient as-is lacks a way of learning from past checks. Chapter 7.3
explains the synergy challenge in terms of the model and outlines
implementation techniques that may get around the issue.

6.1 model and properties

The model combines deep-typed code, shallow-typed code, and un-
typed code in one surface language. Each of these three disciplines
is recognized by a surface-typing judgment and comes with a com-
plier. The three compilers translate well-typed code to a common
evaluation syntax that has one untyped semantics.

Although the three varieties of surface code give rise to six kinds
of interactions, the model keeps these interactions under control with
only three kinds of run-time boundaries (figure 66). A wrap boundary
inserts a higher-order check to support deep types. A scan boundary
validates a top-level shape for shallow code. Lastly, a noop bound-
ary does nothing. Chapter 6.1.8 proves that these checks are strong
enough to realize shallow types that satisfy shape-soundness and
deep types that satisfy complete monitoring.

6.1.1 Syntax

The surface syntax begins with simple expressions and adds mod-
ule boundaries to enable a three-way interpretation. The simple ex-
pressions are function application (app s s), primitive operation appli-

137

138

Deep Shallow

Untyped

wrap

wrap

wrap

wrap

noop

scan

Figure 66: Deep, Shallow, and untyped interactions.

s = x | i | 〈s, s〉 |
λx. s | λ(x : τ). s | λ(x : xτy). s |
unop s | binop s s | app s s |
module L s

τ = Nat | Int | τ×τ | τ⇒τ

L = D | S | U
X = τ | xτy | U

Figure 67: Surface syntax

6.1 139

cation (unop s, binop s s), variables (x), integers (i), pairs (〈s, s〉), and
functions. Functions come in three flavors: an untyped function has
no type annotation (λx. s), a deep-typed function has a type anno-
tation (λ(x : τ). s), and a shallow-typed function has an underlined
type annotation (λ(x : xτy). s). The underline mark simplifies proofs,
and serves as a hint to readers that only the top-level shape of this
type is guaranteed at run-time. It is not a meta-function. Types (τ) ex-
press natural numbers (Nat), integers (Int), pairs (τ×τ), and functions
(τ⇒τ).

Module-boundary expressions declare the intent of the code within
them. For example, the term module D s0 asks for deep types in ex-
pression s0 by default. If another boundary appears within s0, then
its language flag (D, S , or U) sets a new default.

Note that module boundaries are similar to the boundary expres-
sions from chapter 4. Instead of adding a third boundary term to split
the old stat boundaries into deep and shallow versions, the present
model uses one parameterized term. Both the old and new boundary
terms correspond to module boundaries in a realistic language.

6.1.2 Surface Typing

In principle, the surface language comes with three typing judgments
to recognize deep, shallow, and untyped code. These judgments are
mutually recursive at module-boundary terms. To keep things sim-
ple, however, figure 68 presents one judgment (Γ `s e : X) that sup-
ports three possible conclusions. A conclusion (X) is one of: the uni-
type U of untyped code, a type τ for deep-typed code, or a decorated
type xτy for shallow code. The notation is again a hint. A decorated
type is equal to a normal type during static type checking, but makes
a weaker statement about program behavior.

The typing rules are relatively simple, but declarative. The rules
for modules, for example, give no hint about how to find a type con-
clusion that fits the rest of the program. A second notably aspect is
that one module may contain another with the same language flag.

Figure 69 defines a subtyping judgment (<:) and a type-assignment
for primitive operations (∆). These are both standard.

6.1.3 Evaluation Syntax

The evaluation syntax removes the declarative parts of the surface
syntax and adds tools for enforcing types. First to go are the module
boundary expressions, which express a desire for a style of type en-
forcement. Instead, the evaluation syntax has three kinds of run-time
check expression: a wrap boundary fully enforces a type, perhaps
with a guard wrapper (G τ v); a scan boundary checks a type-shape
(σ), and a noop boundary checks nothing. Second, the shallow-typed

140

(x0 : U) ∈ Γ

Γ `s x0 : U
(x0 : τ0) ∈ Γ

Γ `s x0 : τ0

(x0 : xτ0y) ∈ Γ

Γ `s x0 : xτ0y Γ `s i0 : U

Γ `s n0 : Nat Γ `s n0 : xNaty Γ `s i0 : Int Γ `s i0 : xInty

Γ `s s0 : U Γ `s s1 : U
Γ `s 〈s0, s1〉 : U

(x0 : U), Γ `s e0 : U
Γ `s λx0. e0 : U

(x0 : τ0), Γ `s e0 : τ1

Γ `s λ(x0 : τ0). e0 : τ0⇒τ1

(x0 : xτ0y), Γ `s e0 : xτ1y
Γ `s λ(x0 : τ0). e0 : xτ0⇒τ1y

Γ `s e0 : τ0

∆(unop, τ0) = τ1

Γ `s unop e0 : τ1

Γ `s e0 : xτ0y Γ `s e1 : xτ1y
∆(binop, τ0, τ1) = τ2

Γ `s binop e0 e1 : xτ2y

Γ `s e0 : xτ0⇒τ1y Γ `s e1 : xτ0y
Γ `s app{e0} e1 : xτ1y

Γ `s e0 : xτ0y τ0 <: τ1

Γ `s e0 : xτ1y

Γ `s e0 : U
Γ `s module U e0 : U

Γ `s e0 : τ0

Γ `s module D e0 : U

Γ `s e0 : xτ0y
Γ `s module S e0 : U

Γ `s e0 : U
Γ `s module U e0 : τ0

Γ `s e0 : τ0

Γ `s module D e0 : τ0

Γ `s e0 : xτ0y
Γ `s module S e0 : τ0

Γ `s e0 : U
Γ `s module U e0 : xτ0y

Γ `s e0 : τ0

Γ `s module D e0 : xτ0y

Γ `s e0 : xτ0y
Γ `s module S e0 : xτ0y

Figure 68: Surface typing judgment (selected rules, others in A.3)

6.1 141

τ <: τ

Nat <: Int

τ0 <: τ2 τ1 <: τ3

τ0×τ1 <: τ2×τ3

τ2 <: τ0 τ1 <: τ3

τ0⇒τ1 <: τ2⇒τ3

∆ : unop×τ−→τ

∆(fst, τ0×τ1) = τ0

∆(snd, τ0×τ1) = τ1

∆ : binop×τ×τ−→τ

∆(plus, Nat, Nat) = Nat

∆(plus, Int, Int) = Int

∆(quotient, Nat, Nat) = Nat

∆(quotient, Int, Int) = Int

Figure 69: Subtyping and primitive op. typing

e = x | v | 〈e, e〉 | unop e | binop e e | app e e | Err |
wrap τ e | scan σ e | noop e

v = i | 〈v, v〉 | λx. e | λ(x : τ). e | λ(x : σ). e | G τ v
σ = Nat | Int | Pair | Fun | Any

Err = WrapErr | ScanErr | DivZeroErr | TagErr

E = • | unop E | binop E e | binop v E | app E e | app v E |
noop E | scan σ E | wrap τ E

Figure 70: Evaluation Syntax

functions from the surface syntax (λ(x : xτy). s) are replaced with
shape-annotated functions (λ(x : σ). e). Type-shapes (σ) express the
outermost constructor of a type; the weakened function annotation
reflects a weakened run-time guarantee.

The evaluation syntax also includes values (v), errors (Err), and
evaluation contexts (E). Running a program may produce a value or
an error. For the most part, the different errors come from bound-
aries. A WrapErr arises when a wrap boundary receives invalid input,
a ScanErr comes from a failed scan, and a DivZeroErr occurs when a
primitive operation rejects its input. The final error, TagErr, is the re-
sult of a malformed term that cannot reduce further. Such errors can
easily occur in untyped code without any boundaries; for instance,
the application of a number (app 2 4) signals a tag error. Reduction in
typed code, whether deep or shallow, should never raise a tag error.

6.1.4 Evaluation Typing

The evaluation syntax comes with three typing judgments that de-
scribe the run-time invariants of deep, shallow, and untyped code.
The deep typing judgment (`D) validates full types. The shallow

142

(x0 : τ0) ∈ Γ

Γ `D x0 : τ0 Γ `D n0 : Nat Γ `D i0 : Int

Γ `D e0 : τ0 Γ `D e1 : τ1

Γ `D 〈e0, e1〉 : τ0×τ1

(x0 : τ0), Γ `D e0 : τ1

Γ `D λ(x0 : τ0). e0 : τ0⇒τ1

Γ `U v0 : U
Γ `D G τ0 v0 : τ0

Γ `S v0 : σ0

Γ `D G τ0 v0 : τ0

Γ `D e0 : τ0

∆(unop, τ0) = τ1

Γ `D unop e0 : τ1

Γ `D e0 : τ0 Γ `D e1 : τ1

∆(binop, τ0, τ1) = τ2

Γ `D binop e0 e1 : τ2

Γ `D e0 : τ0⇒τ1 Γ `D e1 : τ0

Γ `D app e0 e1 : τ1

Γ `D e0 : τ0

Γ `D noop e0 : τ0

Γ `U e0 : U
Γ `D wrap τ0 e0 : τ0

Γ `S e0 : σ0

Γ `D wrap τ0 e0 : τ0

Γ `D e0 : τ0 τ0 <: τ1

Γ `D e0 : τ1 Γ `D Err : τ0

Figure 71: Deep typing judgment

judgment (`S) checks top-level shapes. In this judgment, elimina-
tion forms have a catch-all shape (Any) because they can produce
any value at run-time; these must appear within a scan expression
to guarantee a non-trivial shape. Lastly, the untyped judgment (`U)
guarantees no free variables.

6.1.5 Compilation

A compilation pass links the surface and evaluation syntaxes. Since
the goal of compilation is to insert enough run-time checks to give
a well-typed result, the compiler is effectively a completion pass that
fills in details missing from the surface term [52]. The basic goal is
to translate module boundaries to appropriate run-time checks, but
other terms may require checks as well. Formally, the goal is to map
all well-typed surface expressions to well-typed evaluation expres-
sions (lemma 6.1.4). The completion rules shown in figures 74 and 75

meet this goal via different strategies for each kind of code:

6.1 143

(x0 : σ0) ∈ Γ

Γ `S x0 : σ0 Γ `S n0 : Nat Γ `S i0 : Int

Γ `S e0 : σ0 Γ `S e1 : σ1

Γ `S 〈e0, e1〉 : Pair

(x0 : U), Γ `U e0 : U
Γ `S λx0. e0 : Fun

(x0 : σ0), Γ `S e0 : σ1

Γ `S λ(x0 : σ0). e0 : Fun

Γ `D v0 : τ0

Γ `S G τ0 v0 : Fun

Γ `S e0 : σ0

Γ `S unop e0 : Any

Γ `S e0 : σ0 Γ `S e1 : σ1

Γ `S binop e0 e1 : Any

Γ `S e0 : Fun Γ `S e1 : σ0

Γ `S app e0 e1 : Any

Γ `S e0 : σ0

Γ `S noop e0 : σ0

Γ `U e0 : U
Γ `S noop e0 : Any

Γ `U e0 : U
Γ `S scan σ0 e0 : σ0

Γ `S e0 : σ1

Γ `S scan σ0 e0 : σ0

Γ `D e0 : τ0 shape (τ0) = σ0

Γ `S wrap τ0 e0 : σ0

Γ `S e0 : σ0 σ0 <: σ1

Γ `S e0 : σ1 Γ `S Err : σ0

σ <: σ

Nat <: Int σ0 <: Any

shape : τ−→σ

shape (Nat) = Nat

shape (Int) = Int

shape (τ0×τ1) = Pair

shape (τ0⇒τ1) = Fun

Figure 72: Shallow typing judgment, subtyping, and shape map

144

(x0 : U) ∈ Γ

Γ `U x0 : U Γ `U i0 : U
Γ `U e0 : U Γ `U e1 : U

Γ `U 〈e0, e1〉 : U

(x0 : U), Γ `U e0 : U
Γ `U λx0. e0 : U

(x0 : σ0), Γ `S e0 : σ1

Γ `U λ(x0 : σ0). e0 : U

Γ `D v0 : τ0

Γ `U G τ0 v0 : U
Γ `U e0 : U

Γ `U unop e0 : U

Γ `U e0 : U Γ `U e1 : U
Γ `U binop e0 e1 : U

Γ `U e0 : U Γ `U e1 : U
Γ `U app e0 e1 : U

Γ `U e0 : U
Γ `U noop e0 : U

Γ `S e0 : σ0

Γ `U noop e0 : U
Γ `U e0 : U

Γ `U scan σ0 e0 : U

Γ `S e0 : σ1

Γ `U scan σ0 e0 : U
Γ `D e0 : τ0

Γ `U wrap τ0 e0 : U Γ `U Err : U

Figure 73: Untyped typing judgment (dynamic typing)

• In deep-typed code, completion inserts wrap expressions at the
module boundaries to less-typed code. Other deep expressions
have no checks.

• In shallow code, completion scans incoming untyped code and
the result of every elimination form.

• In untyped code, completion adds no run-time checks. At the
boundaries to deep and shallow code, however, the above strate-
gies call for a wrap or scan check.

Figure 74 in particular shows how surface functions translate to eval-
uation syntax functions and how applications translate. For deep and
untyped code, the completion of an application is simply the comple-
tion of its subexpressions. For shallow code, this elimination form
requires a scan check to validate the result. Other elimination forms
have similar completions.

The completion of a shallow function is deceptively simple. In a
realistic language, such functions would translate to an un-annotated
function that first scans the shape of its input and then proceeds with
the body expression. This model, however, gets an implicit domain
check thanks to cooperation from the upcoming semantics. The appli-
cation of a shallow-typed function always scans the argument before

6.1 145

Γ `s x0 : U x0 Γ `s x0 : τ0 x0 Γ `s x0 : xτ0y x0

(x0 : U), Γ `s e0 : U e1

Γ `s λx0. e0 : U λx0. e1

(x0 : τ0), Γ `s e0 : τ1 e1

Γ `s λ(x0 : τ0). e0 : τ0⇒τ1 λ(x0 : τ0). e1

(x0 : xτ0y), Γ `s e0 : xτ1y e1 shape (τ0) = σ0

Γ `s λ(x0 : xτ0y). e0 : xτ0⇒τ1y λ(x0 : σ0). e1

Γ `s e0 : U e2

Γ `s e1 : U e3

Γ `s app e0 e1 : U app e2 e3

Γ `s e0 : τ1⇒τ0 e2

Γ `s e1 : τ1 e3

Γ `s app e0 e1 : τ0 app e2 e3

Γ `s e0 : xτ1⇒τ0y e2

Γ `s e1 : xτ1y e3 shape (τ0) = σ0

Γ `s app e0 e1 : xτ0y scan σ0 (app e2 e3)

Figure 74: Surface-to-evaluation completion (selected rules, others in
A.3)

substituting into the function body (chapter 6.1.6). This design simpli-
fies the model and proof details regarding substitution, but the lack
of an explicit domain check means that the model cannot support a
pass that eliminates redundant checks. Fixing this limitation is a top
priority for future extensions of the model.

Figure 75 presents the completion rules for module boundaries.
Aside from the self-boundaries, the picture in figure 66 is an accurate
summary of these rules. Each module represents a channel of com-
munication between a context and the inside of the module. The mod-
ule declares its type discipline and the context’s style is clear from
the conclusion of the surface typing judgment. To protect against
mis-communications, the side with the stronger type requirements
determines the check that a module boundary completes to. Deep
always directs, shallow wins over untyped, and the others—with one
exception—are clear noops. The exception is for shallow values that
exit to untyped code; for integers there is nothing to protect, but
functions would seem to need some kind of wrapper to protect their
body against untyped input. In fact, these boundaries are safe noops
because shallow pre-emptively protects functions as noted above.

146

Γ `s e0 : U e1

Γ `s module U e0 : U noop e1

Γ `s e0 : τ0 e1

Γ `s module D e0 : U wrap τ0 e1

Γ `s e0 : xτ0y e1

Γ `s module S e0 : U noop e1

Γ `s e0 : U e1

Γ `s module U e0 : τ0 wrap τ0 e1

Γ `s e0 : τ0 e1

Γ `s module D e0 : τ0 noop e1

Γ `s e0 : xτ0y e1

Γ `s module S e0 : τ0 wrap τ0 e1

Γ `s e0 : U e1

Γ `s module U e0 : xτ0y scan σ0 e1

Γ `s e0 : τ0 e1

Γ `s module D e0 : xτ0y wrap τ0 e1

Γ `s e0 : xτ0y e1

Γ `s module S e0 : xτ0y noop e1

Figure 75: Completion for module boundaries

6.1 147

unop v0 B TagErr

if δ(unop, v0) is undefined

unop v0 B δ(unop, v0)

if δ(unop, v0) is defined

binop v0 v1 B TagErr

if δ(binop, v0, v1) is undefined

binop v0 v1 B δ(binop, v0, v1)

if δ(binop, v0, v1) is defined

app v0 v1 B TagErr

if v0 6∈ λx. e ∪ λ(x : τ). e ∪ λ(x : σ). e ∪G τ v

app (λx0. e0) v0 B e0[x0←v0]

app (λ(x0 : τ0). e0) v0 B e0[x0←v0]

app (λ(x0 : σ0). e0) v0 B ScanErr

if ¬shape-match (σ0, v0)

app (λ(x0 : σ0). e0) v0 B e0[x0←v0]

if shape-match (σ0, v0)

app (G τ0⇒τ1 v0) v1 B wrap τ1 (app v0 (wrap τ0 v1))

noop v0 B v0

scan σ0 v0 B ScanErr

if ¬shape-match (σ0, v0)

scan σ0 v0 B v0

if shape-match (σ0, v0)

wrap τ0 v0 B WrapErr

if shape-match (shape (σ0), v0)

wrap τ0⇒τ1 v0 B G τ0⇒τ1 v0

if shape-match (Fun, v0)

wrap τ0×τ1 〈v0, v1〉 B 〈wrap τ0 v0, wrap τ1 v1〉
wrap τ0 v0 B v0

if τ0 ∈ Int∪Nat and shape-match (τ0, v0)

e→∗ e
de f
= reflexive, transitive, compatible (w.r.t. E) closure of B

Figure 76: Semantics for the evaluation syntax

148

(unop ((v0))
`0)

`1
B (TagErr)`1

if v0 6∈ (v)` and δ(unop, v0) is undefined

(unop ((v0))
`0)

`1
B ((δ(unop, v0)))

`0`1

if δ(unop, v0) is defined

(binop ((v0))
`0 ((v1))

`1)
`2

B (TagErr)`2

if vi 6∈ (v)` and δ(binop, v0, v1) is undefined

(binop ((v0))
`0 ((v1))

`1)
`2

B (δ(binop, v0, v1))
`2

if δ(binop, v0, v1) is defined

(app ((v0))
`0 v1)

`1
B (TagErr)`1

if v0 6∈ (v)` ∪ λx. e ∪ λ(x : τ). e ∪ λ(x : σ). e ∪G τ v

(app ((λx0. e0))
`0 v0)

`1
B ((e0[x0← ((v0))

`1rev (`0)]))
`0`1

(app ((λ(x0 : τ0). e0))
`0 v0)

`1
B ((e0[x0← ((v0))

`1rev (`0)]))
`0`1

(app ((λ(x0 : σ0). e0))
`0 v0)

`1
B (ScanErr)`1

if ¬shape-match (σ0, v0)

(app ((λ(x0 : σ0). e0))
`0 v0)

`1
B ((e0[x0← ((v0))

`1rev (`0)]))
`0`1

if shape-match (σ0, v0)

(app ((G τ0⇒τ1 (v0)
`0))

`1 v1)
`2

B

((wrap τ1 (app v0 (wrap τ0 ((v1))
`2rev (`1)))

`0
))
`1`2

(noop ((v0))
`0)

`1
B ((v0))

`0`1

(scan σ0 ((v0))
`0)

`1
B (ScanErr)`1

if ¬shape-match (σ0, v0)

(scan σ0 ((v0))
`0)

`1
B ((v0))

`0`1

if shape-match (σ0, v0)

(wrap τ0 ((v0))
`0)

`1
B (WrapErr)`1

if shape-match (shape (σ0), v0)

(wrap τ0⇒τ1 ((v0))
`0)

`1
B (G τ0⇒τ1 ((v0))

`0)
`1

if shape-match (Fun, v0)

(wrap τ0×τ1 ((〈v0, v1〉))`0)
`1

B

(〈wrap τ0 ((v0))
`0 , wrap τ1 ((v1))

`0〉)
`1

(wrap τ0 ((v0))
`0)

`1
B (v0)

`1

if τ0 ∈ Int∪Nat and shape-match (τ0, v0)

Figure 77: Labeled semantics for the evaluation language, derived
from figure 76 and the guidelines in chapter 4.4.4.

6.1 149

δ : unop×v−→v

δ(fst, 〈v0, v1〉) = v0

δ(snd, 〈v0, v1〉) = v1

δ : binop×v×v−→v

δ(plus, i0, i1) = i0 + i1
δ(quotient, i0, 0) = DivErr

δ(quotient, i0, i1) = bi0/i1c
shape-match : σ×v−→B
shape-match (Fun, v0) = True

if v0 ∈ λx. e ∪ λ(x : τ). e ∪ λ(x : σ). e ∪G τ v

shape-match (Pair, 〈v0, v1〉) = True

shape-match (Int, i0) = True

shape-match (Nat, n0) = True

shape-match (Any, v0) = True

shape-match (σ0, v0) = False

otherwise

Figure 78: Semantic metafunctions

6.1.6 Reduction Relation

The semantics of the evaluation syntax is based on one notion of re-
duction (figure 76). Aside from the domain checks for shallow-typed
functions, reduction proceeds in a standard, untyped fashion. Unary
and binary operations proceed according to the δ metafunction (fig-
ure 78). Basic function application substitutes an argument value
into a function body. Wrapped function application decomposes into
two wrap boundaries: one for the input and another for the result.
Lastly, boundary terms optionally perform a run-time check. A noop
boundary performs no check and lets any value cross. A scan bound-
ary checks the top-level shape of a value against the expected type.
And a wrap boundary checks top-level shapes and either installs a
wrapper around a higher-order value or recursively checks a data
structure.

Figure 78 defines evaluation metafunctions. The δ function gives se-
mantics to primitives. The shape-match function matches a type shape
against the outer structure of a value.

6.1.7 Single-Owner Consistency

Deep types are characterized by complete monitoring (chapter 4). To
state a complete monitoring theorem, the model needs a labeled syn-
tax, a single-owner consistency judgment, and a reduction relation
that propagates labels.

150

e = x | v | 〈e, e〉 | unop e | binop e e | app e e | Err |
wrap τ (e)` | scan σ (e)` | noop (e)` | (e)`

v = i | 〈v, v〉 | λx. e | λ(x : τ). e | λ(x : σ). e | G τ (v)` | (v)`

E = . . . | (E)`

` = D0 | D1 | . . . | S0 | S1 | . . . | U0 | U1 | . . .
` = sequence of ownership labels (`)
L = · | (x : `), L

Figure 79: Ownership syntax

The labeled syntax permits an ownership label around any expres-
sion (figure 79). For example, the terms (4)`0 and (app{x0} x1)`1

illustrate one labeled value and one labeled expression. Most terms
may have zero or more labels. Boundary terms are an exception; a
wrap, scan, or noop boundary must have at least one label around its
subexpression. The notation ((e0))

`0 matches an expression with a
sequence of labels (`0).

An ownership label `0 carries two pieces of information. First is a
typing discipline: D for deep, S for shallow, and U for untyped. Sec-
ond is a natural number index to distinguish different labels. Initially,
in a well-formed expression, these labels state the original owner and
typing of a subterm. As expressions reduce to values and flow across
boundaries, labels accumulate to show which components are partly
responsible for these values.

Ultimately, the goal of our complete monitoring proof effort is to
show that only deep-typed code is responsible for deep-typed expres-
sions. Both shallow and untyped may recklessly share values. The
single-owner consistency judgment in figure 80 formalizes the target
invariant by stating when an expression is consistent for label `0 and
label environment L0. A variable must be bound to `0 in the label
environment. Non-boundary terms must have consistent subterms.
Boundary terms and guard wrappers are ownership switch points;
a boundary is consistent if its subterm is consistent with respect to
the label inside the boundary. Finally, the rules for explicitly-labeled
expressions impose a discipline on labels. A deep-labeled expres-
sion may have other deep labels, but nothing weaker. Shallow and
untyped-labeled expressions, by contrast, can mix together.

Reduction of a labeled expression begins with the rules for the eval-
uation language (figure 76) and propagates labels according to the
laws stated in chapter 4.4.4. Figure 77 presents the rules in full. In
short, labels always accumulate unless a simple value meets a bound-
ary with a matching type shape. Even noop boundaries add a label;
this is why ownership consistency allows sequences of deep labels.

6.1 151

(x0 : `0) ∈ L0

`0; L0 x0 `0; L0 i0

`0; L0 e0 `0; L0 e1

`0; L0 〈e0, e1〉

`0; (x0 : `0), L0 e0

`0; L0 λx0. e0

`0; (x0 : `0), L0 e0

`0; L0 λ(x0 : σ0). e0

`0; (x0 : `0), L0 e0

`0; L0 λ(x0 : τ0). e0

`0; L0 e0

`0; L0 unop e0

`0; L0 e0 `0; L0 e1

`0; L0 binop e0 e1

`0; L0 e0 `0; L0 e1

`0; L0 app e0 e1

`0; L0 Err

`1; L0 e0

`0; L0 noop (e0)
`1

`1; L0 e0

`0; L0 scan σ0 (e0)
`1

`1; L0 e0

`0; L0 wrap τ0 (e0)
`1

`1; L0 v0

`0; L0 G τ0 (v0)
`1

D1; L0 e0

D0; L0 (e0)
D1

S1; L0 e0

S0; L0 (e0)
S1

U0; L0 e0

S0; L0 (e0)
U0

U1; L0 e0

U0; L0 (e0)
U1

S0; L0 e0

U0; L0 (e0)
S0

Figure 80: Single-owner consistency

152

6.1.8 Properties

The primary meta-theoretic results are about type soundness and
complete monitoring. Type soundness predicts the possible outcomes
of a well-typed expression. Naturally, these outcomes depend on the
“strength” of the static types; for example, untyped code has weaker
guarantees than shallow code. Complete monitoring asks whether
single-owner consistency is an invariant; if so, then programmers can
trust deep types as behavioral guarantees.

The statement of type soundness relies on one new notation and
a family of metafunctions. The notation s0 →∗ e0 defines evaluation
for surface expressions; the meaning is that s0 is well-typed somehow
(∃X . `s s0 : X), compiles to an evaluation expression (`s s0 : X
e1), and then the compiled expression steps to the result (e1 →∗ e0).
The metafunctions—0, shape, and 1—map surface-language types to
evaluation types. One function, shape, extends the similarly-name
function from figure 72 to map the unitype U to itself. The others are
simple: 0 maps all types to U and 1 is the identity. These tools enable
a concise, parameterized statement of type soundness.

Note that type soundness does not rule out any particular errors.
Two extensions could enable a finer statement: (1) split the one notion
of reduction into three and introduce new errors for invariant failues;
(2) introduce three kinds of evaluation context and show that steps
inside typed code do not raise tag errors. Chapter 4 demonstrates the
first method. Greenman and Felleisen [43] demonstrate the second.

Definition 6.1.1 (TS(F)). Language L satisfies TS (F) if for all s0 such
that `s s0 : X holds, one of the following holds:

• s0 →∗ v0 and `L v0 : F (X)

• s0 →∗ Err

• s0 →∗ diverges

Theorem 6.1.2 (type soundness).

• Language U satisfies TS (0)

• Language S satisfies TS (shape)

• Language D satisfies TS (1)

Proof. Lemma 6.1.4 guarantees that the compiled form of the sur-
face expression is well-typed. The rest follows from straightforward
progress and preservation lemmas for the evaluation typing judg-
ments. Lemma 6.1.5 is essential to preservation for primitive oper-
ations. Lemmas 6.1.6 and 6.1.7 are key aspects of preservation for
boundary terms.

6.1 153

Complete monitoring is technically a statement about labeled ex-
pressions and a label-propagating reduction relation. But, because
the propagating reduction is derived from the basic reduction rela-
tion in a straightforward manner, our theorem statement uses the
basic symbol (→∗). Likewise, both e0 and e1 refer to a labeled variant
of an evaluation-language expression. If no such labeling exist for a
term, then the theorem holds vacuously.

Theorem 6.1.3 (complete monitoring). If `s s0 : X and `s s0 : X e0

and `0; · e0 and e0 →∗ e1 then `0; · e1.

Proof. By a preservation argument. The proofs for each basic reduc-
tion step are sketched below. These depend on two metafunctions:
rev reverses a sequence of labels and last extracts the last (outermost)
element of such a sequence.

case : (unop ((v0))
`0)

`1
B (TagErr)`1

by the definition, `1; · (TagErr)`1 .

case : (unop ((v0))
`0)

`1
B ((δ(unop, v0)))

`0`1

1. `0 is either all deep labels or a mix of shallow and untyped,
by single-owner consistency of the redex.

2. similarly, `1 must match `0

3. v0 is a pair, because δ is defined on it.

4. both components of v0 are well-labeled, again by single-
owner consistency on the redex.

5. by the definition of δ.

case : (binop ((v0))
`0 ((v1))

`1)
`2
B (TagErr)`2

by the definition of .

case : (binop ((v0))
`0 ((v1))

`1)
`2
B (δ(binop, v0, v1))

`2

by the definition of and δ; note that the binary operators are not
elimination forms.

case : (app ((v0))
`0 v1)

`1
B (TagErr)`1

by the definition of .

case : (app ((λx0. e0))
`0 v0)

`1
B ((e0[x0← ((v0))

`1rev (`0)]))
`0`1

1. `0 is all deep or a mix of shallow and untyped, by single-
owner consistency of the redex.

154

2. `2; · v0, also by single-owner consistency of the redex.

3. last (`0); · ((v0))
`1rev (`0), by steps 1 and 2.

4. last (`0); · x0 for each occurrence of x0 in e0, by single-
owner consistency of the redex.

5. by a substitution lemma.

case : (app ((λ(x0 : τ0). e0))
`0 v0)

`1
B ((e0[x0← ((v0))

`1rev (`0)]))
`0`1

similar to the previous case.

case : (app ((λ(x0 : σ0). e0))
`0 v0)

`1
B (ScanErr)`1

by the definition of .

case : (app ((λ(x0 : σ0). e0))
`0 v0)

`1
B ((e0[x0← ((v0))

`1rev (`0)]))
`0`1

similar to the other substitution cases.

case : (app ((G τ0⇒τ1 (v0)
`0))

`1 v1)
`2

B

((wrap τ1 (app v0 (wrap τ0 ((v1))
`2rev (`1)))

`0
))
`1`2

1. `0; · v0, by single-owner consistency of the redex.

2. `2; · v1, again by the redex.

3. `1 is either all deep or a mix of shallow and untyped, again
by the redex.

4. by the definition of .

case : (noop ((v0))
`0)

`1
B ((v0))

`0`1

by the definition of , because a noop boundary connects either:
two deep components, two shallow components, two untyped
components, or one shallow and one untyped component.

case : (scan σ0 ((v0))
`0)

`1
B (ScanErr)`1

by the definition of .

case : (scan σ0 ((v0))
`0)

`1
B ((v0))

`0`1

by the definition of , because a scan boundary only links an un-
typed component to a shallow component.

case : (wrap τ0 ((v0))
`0)

`1
B (WrapErr)`1

by the definition of .

case : (wrap τ0⇒τ1 ((v0))
`0)

`1
B (G τ0⇒τ1 ((v0))

`0)
`1

6.1 155

by the definition of .

case : (wrap τ0×τ1 ((〈v0, v1〉))`0)
`1
B

(〈wrap τ0 ((v0))
`0 , wrap τ1 ((v1))

`0〉)
`1

by the definition of . Note that the rule moves the elements of the
pair in the redex into a new pair in the contractum.

case : (wrap τ0 ((v0))
`0)

`1
B (v0)

`1

where τ0 ∈ Int∪Nat and shape-match (τ0, v0)

by the definition of .

Lemma 6.1.4 (completion). If `s s0 : X then `s s0 : X e0 and either:

• X ∈ τ and `D e0 : X

• X ∈ xτy and `S e0 : shape (X)

• X ∈ U and `U e0 : U

Lemma 6.1.5 (δ, ∆ agreement).

• If ∆(unop, U) = U and `U v0 : U

and δ(unop, v0) is defined then `U δ(unop, v0) : U

• If ∆(unop, σ0) = σ1 and `S v0 : σ0

and δ(unop, v0) is defined then `S δ(unop, v0) : σ1

• If ∆(unop, τ0) = τ1 and `D v0 : τ0

and δ(unop, v0) is defined then `D δ(unop, v0) : τ1

• If ∆(binop, U, U) = U and `U v0 : U and `U v1 : U

and δ(binop, v0, v1) is defined then `U δ(binop, v0, v1) : U

• If ∆(binop, σ0, σ1) = σ2 and `S v0 : σ0 and `S v1 : σ1

and δ(binop, v0, v1) is defined then `S δ(binop, v0, v1) : σ2

• If ∆(binop, τ0, τ1) = τ2 and `D v0 : τ0 and `D v1 : τ1

and δ(binop, v0, v1) is defined then `D δ(binop, v0, v1) : τ2

Lemma 6.1.6. If `S e0 : σ0 then `U e0 : U

Proof. By definition. The key rules are for shape-annotated functions.

Lemma 6.1.7 (boundary-crossing).

156

• If `L v0 : X and shape-match (σ0, v0) then `S v0 : σ0

• If `S v0 : σ0 then `U v0 : U

• If `D v0 : τ0 and wrap τ0 v0 B v1 then `S v1 : shape (τ0) and
`U v1 : U

6.2 implementation

The implementation of Shallow Racket begins with two new #lang

languages to communicate the options available to programmers.

• Modules that start with #lang typed/racket continue to use
deep types, same as earlier versions of Typed Racket;

• #lang typed/racket/deep is a new way to opt-in to deep types;

• and #lang typed/racket/shallow provides shallow types.

All three languages invoke the same type checker. At steps where
deep and shallow disagree, the compiler queries the current language
to proceed. For example, the type-directed optimizer checks that it
has deep types before rewriting code based on the deep soundness
guarantee.

Many parts of the modified compiler use a similar, one-or-the-other
strategy to handle deep and shallow types. This section deals with
the more challenging aspects. Sharing variables between deep and
shallow required changes to type-lookup and wrapper generation
(chapter 6.2.1). Sharing macros requires further changes; currently,
deep-typed syntax can only be re-used through unsafe mechanisms
(chapter 6.2.1). Lastly, Typed Racket has a small API that gives pro-
grammers control over the deep type enforcement strategy. This API
needed generalizations to handle shallow types (chapter 6.2.3).

6.2.1 Deep and Shallow Interaction

Racket supports both separate compilation and hygienic macros [37].
Each module in a program gets compiled to a core language indi-
vidually, and other modules can re-use the output. Typed Racket
cooperates with the separate compilation protocol by serializing the
results of type checking [22, 106]. A well-typed module compiles to
untyped code (with appropriate contracts) and a local type environ-
ment. When one deep module imports from another, it can find the
type of the imported identifier in the type environment.

At first glance, it appears that shallow code can use the same pro-
tocol to find the type of deep imports. The protocol fails, however,
because wrappers get in the way. When deep wants to provide an

6.2 157

identifier, it really provides a piece of syntax called a rename trans-
former. These transformers expand to one of two identifiers depend-
ing on where they appear: deep-typed code gets the original identi-
fier and can easily look up its type, but untyped and shallow code
gets a wrapped version. The wrapper causes a direct type lookup to
fail.

For deep-to-shallow exports, the solution is to modify type lookup
to pass through wrappers. Fortunately, the change was easy to make
because the Racket contract library provides enough metadata. At
compile time (and only then), a wrapped identifier is associated with
a structure that links back to the original. The shallow type checker
looks out for these wrappers and uncovers the originals as needed.

Shallow-to-deep exports use a dual method. Like deep, a shallow
module provides only rename transformers. These expand to the
original identifier in other shallow and untyped code; the original is
associated with type information. For deep clients, the transformers
expand to a wrapped identifier. Consequently, the deep type checker
watches for “untyped” wrappers and tests whether there is an avail-
able type. Such types allow static type checks to succeed, and at
run-time the wrapper keeps deep code safe.

A surprising consequence of the final protocol is that a shallow
module must be prepared to create wrappers for its exports. The
wrapper-making code is generated during compilation, at the end of
type checking, but it does not run until needed by a deep client. In
this way, only programs that depend on deep code suffer from the
expressiveness limits of wrappers.

6.2.2 Syntax Re-Use

Shallow code cannot use deep macros. Re-use is desirable to avoid
copying code, but it requires a static analysis to enforce soundness.
This section explains the problem and criteria for a solution.

To appreciate the problem, consider the following simple macro.
This macro applies a typed function f to an input, and is consequently
unsafe:

(define-syntax-rule (call-f x) (f x))

If this macro could appear in shallow code, then any shallow value x

could sneak into the deep function. Unless f makes no assumptions
about its input, such values can break the deep soundness guarantee
and lead to dangerous results in optimized code.

One possible fix is to put a contract around every deep identifier
that appears in a macro. Doing so would require an analysis to find
out which contracts are needed, and a second analysis to install con-
tracts wisely; each identifier requires a contract, but repeated occur-
rences of one identifier should not lead to repeated contract checks. It

158

should also be possible to avoid the contracts if the macro goes only
to deep clients. These are major changes.

Another possibility is to statically check whether a macro is safe to
export. Safe macros appear, for example, in the typed compatibility
layer for the RackUnit testing library. RackUnit is an untyped library
that exports some functions and some macros. The typed layer pro-
vides types for the functions and type-annotated copies of the macros
(about 300 lines in total). These macros are safe because they do not
expose any deep-typed identifiers. For example, the following macro
combines a sequence of expressions into a named RackUnit test case:

(define-syntax (test-case stx)

 (syntax-parse stx

 [(_ name expr ...)

 (quasisyntax/loc stx

 (parameterize ([test-name (ensure-str name)])

 (test-begin expr ...)))]))

This macro is safe for shallow code, but for complicated reasons.
First, ensure-str is a typed function that accepts any input. Sec-
ond, test-begin is a macro from the same file that is also safe. Third,
parameterize comes from untyped Racket.

Currently, the author of a deep library can enable syntax re-use by
disabling the optimizer and unsafely providing macros. This work-
around requires a manual inspection, but it is more appealing than
forking the RackUnit library and asking programmers to choose the
correct version.

6.2.3 Deep–Untyped Utilities

Typed Racket has a small API by Neil Toronto to let programmers con-
trol boundaries between deep and untyped code. The API arose over
time, as programmers (including Neil) discovered challenges. Two
forms in this API can lead to surprising results due to the existence
of shallow code.

The first problem concerns require/untyped-contract. This form
lets untyped code import a typed identifier whose precise type cannot
be expressed with a deep contract. Users supply a supertype of the
precise type and Deep Racket uses this weaker type to generate a
contract.

For example, the jpeg benchmark depends on a library for multi-
dimensional arrays (math/array). This library accepts two kinds of
data for array indices: either a vector of natural numbers or a vector
of integers. Helper functions assert that values with the integer type
do not actually contain negative numbers using a run-time checking
function:

https://docs.racket-lang.org/math/array.html

6.2 159

(: check-array-shape

 (-> (U (Vectorof Natural) (Vectorof Integer))

 (Vectorof Natural)))

Deep contracts cannot express the type for the checking function be-
cause they lack support for true unions. The work around is to im-
pose a supertype on untyped clients:

(require/untyped-contract

 [check-array-shape

 (-> (Vectorof Integer) (Vectorof Natural))])

This form comes with a surprising design choice. If an untyped-
contract identifier flows back into typed code, the type checker uses
the original type rather than the supertype. For deep code, the choice
is convenient because more programs can type-check using the su-
pertype. For shallow, though, the convenience disappears. A shal-
low client must receive the wrapped version of the identifier, which
means shallow code must behave in accordance with the supertype;
hence, the shallow type checker uses the supertype as well. Con-
sequently, some well-typed deep programs raise type errors upon
switching to shallow types.

The second problematic form is define-typed/untyped-identifier,
which creates a new identifier from two old ones. The following
example defines f from two other names:

(define-typed/untyped-identifier f

 typed-f

 untyped-f)

The meaning of the new f depends on the context in which it appears.
In typed code, f expands to typed-f. In untyped code, an f is a
synonym for untyped-f.

The typed-f is intended for deep-typed code. It cannot be safely
used in a shallow module because it may assume type invariants.
Consequently, shallow code gets the untyped id. This means, unfor-
tunately, that changing a deep module to shallow can raise a type
checking error because occurrences of f that expand to untyped-f are
plain, untyped identifiers. There is no way to uncover the type that a
typed-f would have, and anyway there is no guarantee that typed-f
and untyped-f have the same behavior.

For now, such type errors call for programmer-supplied annota-
tions in the shallow client code. In the future, this form would benefit
from a third argument that specifies behavior in shallow contexts.

160

6.3 evaluation

The integration of Shallow Racket and Deep Racket has implications
for expressiveness (chapter 6.3.1) and performance (chapter 6.3.2).
Switching between these two type-enforcement strategies can help
programmers express new designs and avoid huge performance costs.

6.3.1 Expressiveness

Conversations with Typed Racket users have shown that deep types
can lead to unexpected outcomes. In some programs, type enforce-
ment appears overly strict. In others, type enforcement is impossible
because the implementation of Deep Racket lacks wrappers for cer-
tain kinds of values. Worst of all, the wrappers that Deep inserts can
change hehavior. Shallow Racket avoids all of these issues because of
its weak, wrapper-free method of enforcing types.

Less-strict Any Type

Inspired by 2 messages to the Racket-Users mailing list:

• error : Attempted to use a higher-order value passed as
‘Any‘ in untyped code, sent by Denis Michiels on 2018-
04-16.
groups.google.com/g/racket-users/c/cCQ6dRNybDg/m/

CKXgX1PyBgAJ

• Typed Racket: ’Unable to protect opaque value passed as
‘Any‘’ with interesting behavior, sent by Marc Kaufmann
on 2019-12-11.
groups.google.com/g/racket-users/c/jtmVDFCGL28/m/

jwl4hsjtBQAJ

The deep type named Any is a normal “top” type at compile-time,
but it is surprisingly strict at run-time. For compile-time type check-
ing, Any is a supertype of every other type. A function that expects
an Any input must ask occurrence-typing questions before it can do
anything to it. At run-time, the Any type is enforced with an opaque
wrapper. Refer to Findler and Blume [32] for further discussion of
why the opaque wrapper is necessary.

The wrapper is a surprise for developers who expect programs
such as figure 81 to run without error. This program defines a mu-
table box in typed code, assigns the Any type to the box, and sends
it to untyped code. The untyped module attempts to set the box.
Deep Racket raises an exception when untyped code tries to modify
the box. Unfortunately for the programmer, this error is essential for
soundness. If untyped code put an integer in the box, then typed
uses of the box would give a result that is inconsistent with its type.

https://groups.google.com/g/racket-users/c/cCQ6dRNybDg/m/CKXgX1PyBgAJ
https://groups.google.com/g/racket-users/c/cCQ6dRNybDg/m/CKXgX1PyBgAJ
https://groups.google.com/g/racket-users/c/jtmVDFCGL28/m/jwl4hsjtBQAJ
https://groups.google.com/g/racket-users/c/jtmVDFCGL28/m/jwl4hsjtBQAJ

6.3 161

(define b : (Boxof Symbol)

 (box '$))

(define any : Any b)

(set-box! any 'qq) Deep: cannot set Any-wrapped box

Figure 81: Deep seals mutable values of type Any in a wrapper. Shal-
low lets untyped code modify the box.

(: add-mpair (-> (MPairof Real Real) Real))

(define (add-mpair mp)

 (+ (mcar mp) (mcdr mp)))

(add-mpair (mcons 2 4)) Deep: no contract for type

Figure 82: Deep lacks wrappers for mutable pairs and a few other
datatypes. Shallow does not need wrappers, and can express mixed-
typed programs that share such values with untyped code.

Shallow Racket runs the program without error because of its de-
layed checking strategy. If shallow-typed code tries to read a symbol
from the box, then that access will raise an error. Until then, the
program runs.

No Missing Wrappers

Every kind of mutable value that can appear in deep code needs a
kind of wrapper to protect it against untyped contexts. Wrappers do
not exist for some values, causing Deep to reject code that sends such
a value across a boundary.

Figure 82 demonstrates the issue with a mutable pair (MPairof)
type. Deep raises a run-time error when untyped code tries to call the
add-mpair function. In total, there are twelve types that suffer from
this issue. Implementing wrappers for these types is a challenge. For
example, syntax objects can contain mutable data and therefore need
wrappers. But syntax wrappers would require changes to many parts
of the Racket compiler, including the macro expander.

162

(require/typed racket/list

 [index-of

 (All (T)

 (-> (Listof T) T

 (U #f Natural)))])

(index-of '(a b) 'a)

#f

Figure 83: The deep contract for an All type can change the behavior
of untyped code.

Shallow Racket avoids the question of how to implement complex
wrappers thanks to the transient semantics. Consequently, program-
mers gain the ability to send new types across boundaries and explore
new mixed-typed designs.

Uniform Behavior

Inspired by 2 messages to the Racket-Users mailing list:

• Typed code from untyped code, sent by Bertrand on 2020-
02-17.
groups.google.com/g/racket-users/c/UD20HadJ9Ec/m/

Lmuw0U8mBwAJ

• index-of + TR ... parametricity problem?, sent by John B.
Clements on 2019-12-15.
groups.google.com/g/racket-users/c/ZbYRQCy93dY/m/

kF_Ek0VvAQAJ

Although the purpose of Deep Racket wrappers is to reject certain
operations without changing anything else about a program, wrap-
pers can cause some programs to run differently. One obvious case is
code that explicitly looks for wrappers; the answers to low-level obser-
vations such as has-contract? may depend on the type boundaries in
a deep program. Figure 83 presents a second, more subtle case. This
typed module imports an untyped function, index-of, with a pre-
cise polymorphic type. The wrapper that enforces this type creates a
new wrapper for every input to the function—to enforce parametric
polymorphism [49]. Unfortunately, these input wrappers change the
behavior of index-of; it ends up searching the list for a wrapped ver-
sion of the symbol ’a and returns a “not found” result (#f) instead of
the correct position.

https://groups.google.com/g/racket-users/c/UD20HadJ9Ec/m/Lmuw0U8mBwAJ
https://groups.google.com/g/racket-users/c/UD20HadJ9Ec/m/Lmuw0U8mBwAJ
https://groups.google.com/g/racket-users/c/ZbYRQCy93dY/m/kF_Ek0VvAQAJ
https://groups.google.com/g/racket-users/c/ZbYRQCy93dY/m/kF_Ek0VvAQAJ

6.3 163

Shallow Racket avoids all such changes in behavior, including the
well-know object identity issues [56, 94, 111, 114], because the tran-
sient semantics does not use wrappers to enforce types.

6.3.2 Performance

With the Shallow Racket implementation, the tradeoffs of chapter 5

disappear. For all our benchmarks, the choice improves the worst-
case overhead of type boundaries. By implication, Typed Racket can
offer a new migration story (appendix A.4):

use shallow types when converting an untyped application and
switch to deep types after the boundaries stabilize.

Mixing deep and shallow types in one program offers new ways of
improving performance.

GTP Benchmarks, Worst-Case

Now that Racket programmers can easily switch between deep and
shallow types, worst-case overheads improve by orders of magnitude.
Before, the cost of deep types overwhelmed many configurations. Af-
ter, the costs can be avoided by changing the first line (the language
specification) of the typed modules.

Figure 84 quantifies the improvements in the Typed Racket bench-
marks. The first data column reports the old worst-case overheads.
The second columns reports the new worst-case, now that program-
mers can pick the best of deep and shallow types. The final column is
the quotient between the first two. In short, the “after” case is always
better and can be an arbitrarily large improvement.

Case Studies: Deep and Shallow

Early experience with Shallow Racket shows that the combination of
deep and shallow types can be better that either alone. Here are three
motivating case studies. Appendix A.4 contains additional data.

synth The synth benchmark is derived from an untyped program
that interacts with part of a typed math library. When the library
code uses deep types, the original client runs with high overhead—
14x slower that a deep-typed client.

Changing the library to use shallow types improves the gap be-
tween an untyped and deep-typed client to 5x. This fast untyped
configuration is about 2x slower than the fast deep-deep configura-
tion, but the worst-case is 1.39x faster (3 seconds) than before. Overall,
the shallow library is a better tradeoff for synth.

http://github.com/stamourv/synth

164

Benchmark worst before worst after improvement
sieve 15.67x 4.36x 3x
forth 4010.71x 5.51x 727x
fsm 2.38x 2.37x <2x
fsmoo 451.07x 4.28x 105x
mbta 1.92x 1.74x <2x
morsecode 2.77x 1.47x <2x
zombie 54.62x 31.42x <2x
dungeon 14573.66x 4.97x 2930x
jpeg 23.16x 1.66x 13x
zordoz 2.75x 2.72x <2x
lnm 1.21x 1.11x <2x
suffixtree 31.17x 5.80x 5x
kcfa 4.43x 1.24x 3x
snake 11.84x 7.67x <2x
take5 32.17x 2.99x 10x
acquire 4.15x 1.42x 2x
tetris 11.71x 9.93x <2x
synth 49.12x 4.20x 11x
gregor 1.63x 1.59x <2x
quadT 27.10x 7.39x 3x
quadU 59.66x 7.57x 7x

Figure 84: Worst-case overhead before (deep types) and after (either
deep or shallow) the integration of Deep and Shallow Racket.

6.3 165

msgpack MessagePack is a serialization format. MsgPack is a
Typed Racket library that maps Racket values to binary data accord-
ing to the format. The author of this library reported a performance
hit after narrowing some types from Any to a more-precise union type
for serializable inputs. Tests that formerly passed on the package
server timed out after the change.

I cloned MsgPack commit 64a6098 and found that running all unit
tests took 320 seconds. Changing one file to shallow types brought
the time down to 204 seconds—a huge improvement for a one-line
switch. Moving the rest of the library from deep to shallow types
adds only a slight improvement (down to 202 seconds), which sug-
gests that a mix of deep and shallow is best.

external data Typed code that deals with data from an exter-
nal source is often better off with shallow types because they lazily
validate data as it is accessed. By contrast, Typed Racket’s implemen-
tation of deep types eagerly traverses a data structure as soon as it
reaches a type boundary. If the boundary types allow mutable values,
then the traversal is even more expensive because it creates wrappers
as it copies the dataset.

To illustrate the pitfall, I wrote a typed script that reads a large
dataset of apartment data using on off-the-shelf JSON parser and ac-
cesses one field from each object in the dataset. Deep types make the
script run over 10x slower than shallow types.

In principle, deep code can avoid the slowdown with a custom
parser that validates data as it reads it. Indeed, Phil Nguyen has
written a library for JSON that mitigates the overhead of deep types.
Such libraries are ideal, but until we have them for the next data
exchange format (SQL, XML, YAML, ...) shallow types get the job
done with the parsers that are available today.

Release Information

Shallow Typed Racket is publicly available in a pull request to Typed
Racket: racket/typed-racket #948. The patch adds support for shal-
low types, giving Typed Racket programmers a choice between shal-
low and deep type guarantees. I expect to merge the pull request
early in 2021. After the release, I look forward to studying program-
mers’ experience with the multi-faceted system.

http://msgpack.org/
https://gitlab.com/HiPhish/MsgPack.rkt
https://groups.google.com/g/racket-users/c/6KQxpfMLTn0/m/lil_6qSMDAAJ
https://groups.google.com/g/racket-users/c/6KQxpfMLTn0/m/lil_6qSMDAAJ
https://github.com/HiPhish/MsgPack.rkt/commit/64a60986b149703ff9436877da1dd3e86c6e4094
https://github.com/philnguyen/json-type-provider
https://github.com/racket/typed-racket/pull/948

7
F U T U R E W O R K

Now that we have a language that provides deep types via the nat-
ural semantics and shallow types via the transient one, two lines of
crucial future work are apparent: improving blame and improving
the performance of transient.

7.1 transient with blame , natural without blame

The most surprising result of my research is the huge cost of transient
blame (chapter 5.4.4). Because so many benchmarks run slower with
blame than in the worst case of deep types, Shallow Racket does not
even attempt to track blame.

This result demands a two-step investigation. The first step is to
assess the usefulness of the original transient blame algorithm. Both
user studies and automated analyses [60] can help. Preliminary inves-
tigations suggest that transient can effectively ignore all but the first
boundary in a blame set. Once the community knows more about
what makes blame valuable, then the second step is the development
of efficient algorithms that are tailored to developers’ needs.

As for deep types, the natural semantics is designed with blame
in mind. If blame is not needed, then an alternative semantics could
enforce the same type guarantees using fewer wrappers. Feltey et al.
[29] show that removing some wrappers while preserving blame be-
havior leads to better performance. An implementation could remove
many more wrappers if it ignores blame.

7.1.1 Transient Blame Filtering

My implementation of blame for Shallow Racket makes an effort to
filter irrelevant boundaries as suggested by Vitousek et al. [115]. Fil-
tering, however, is expensive and fails on boundaries that use gen-
erative struct types (chapter 5.2.6). The failure warrants further in-
vestigation. But regardless of whether run-time filtering can cover
more types, we need to measure its usefulness. If filtering is unlikely
to help programmers diagnose issues, then removing it can save a
tremendous amount of bookkeeping. The blame map can drop all
types and actions.

167

168

7.2 speed up fully-typed transient

Despite the large improvement relative to natural, the cost of transient
types is still high. The fully-typed configurations of the benchmarks
make this problem apparent (figure 58); in the worst case, transient
is 30x slower than untyped even with type-directed optimizations.
Transient needs a way to reduce the cost of shape checks.

Vitousek et al. [116] have demonstrated that a static analysis and a
tracing JIT compiler can greatly improve performance in Reticulated
Python under the assumption that the program does not interact with
un-analyzed “open world” code. The work sets a high bar; every
benchmark runs within 1.25x overhead. What remains to be seen is
how well an analysis can do without the closed-world assumption,
and whether ahead-of-time techniques can replicate the speedups en-
abled by the JIT.

Earlier versions of Shallow Racket ran much slower due to redun-
dant checks and the overhead of contract library combinators. Per-
haps further analysis and ahead-of-time optimization can close the
gap between fully-typed shallow and deep. Starting points for such
an analysis include occurrence typing [105], modular set-based analy-
sis [68], and Henglein’s tagging optimization [51]. My investigations
in chapter 5 suggest two additional starting points, based on the ob-
servation that Shallow Racket checks the result of almost every func-
tion call that occurs in typed code:

• The only function calls that are not protected with a shape check
have the form (f x) where the identifier f appears in a
trusted environment. For example, Shallow Racket trusts that
calls to map return proper lists. This approach has major limita-
tions. Checking identifiers is brittle; an alias to map defeats the
optimization. Furthermore, the current approach cannot trust
deeper properties of a type. A call to filter, for example, guar-
antees the shape of the result and the shape of every element
in the list. There should be some way to encode this shape
knowledge in a type environment, rather than a flat identifier
environment.

• Some user-defined functions do not need transient result checks.
If a transient module defines a function f = (λ (x)) then
there is no need for the current module to check its results be-
cause static typing guarantees a shape-correct output. Other
functions that are defined indirectly, for example by reading a
function from an untyped list (f = (car f*)), cannot be trusted.

To experiment with similar improvements, the model from chapter 6.1
must gain syntax for the function-domain checks that are currently
baked in to the semantics. Refer to chapter 6.1.5 for a discussion.

7.3 169

Deep Shallow

wrap, if value escapes to U

wrap, if value from U

Figure 85: With an escape analysis, the deep–shallow boundaries
could be weakened.

The Pycket compiler adds a JIT to Deep Typed Racket and signif-
icantly reduces the overhead of type boundaries [9, 10]. Adapting
this backend to Shallow Racket may reduce costs immediately, with-
out the need for an analysis. In the context of a simpler type sys-
tem, Roberts et al. [84] report that a tracing JIT eliminates the cost of
transient-inspired checks in Grace.

7.3 improving deep–transient interaction

The model in chapter 6 is safe, but makes deep types expensive. Every
boundary to deep code gets protected with a wrap check (figure 66).
For boundaries between deep and untyped this is no surprise, be-
cause the untyped code is unconstrained. For shallow code, though,
static typing provides some checked claims; one would hope to get
away with a less expensive check at the boundary. After all, closed
programs that use only deep and shallow code need no checks in
principle because every line of code is validated by the strong surface-
language type checker.

One possible way to optimize is to weaken the boundary between
deep and shallow. Deep can avoid wrapping an export if the value
never interacts with untyped code going forward. Likewise, deep
can trust an import if the value was never handled or influenced by
untyped code. Figure 85 sketches the boundaries that could change
via this strategy; the deep–untyped and shallow–untyped boundaries
are unaffected. Note, however, that determining whether a value
interacts with untyped code requires a careful analysis. Developing
a correct analysis that runs quickly is a research challenge in itself.

A second possibility is to make the deep–shallow boundary a noop
by delaying wrappers until a deep value reaches untyped code. Ide-
ally, this strategy can work with an escape analysis to avoid wrapping
untyped values that never reach deep code (figure 86). The challenge
here is to design an escape analysis and to add wrapper-making code
to shallow without losing the expressiveness that transient gains by
avoiding wrappers altogether. For first-order interactions, Shallow
can be careful about the identifiers that it sends to untyped code.

170

Deep Shallow Untyped
noop

wrap, if value from D

wrap, if value escapes to D

Figure 86: With an escape analysis and the ability to create wrap-
pers in shallow code, all runtime type checks could be pushed to the
boundaries with untyped code.

Higher-order communication is the real source of difficulties. For
example, if shallow imports an untyped map function, then shallow
must be prepared to wrap every function that it sends to map just in
case one of the functions is deep-typed.

If a language can create wrappers in shallow code, however, then
the Forgetful semantics (chapter 4) may be a better fit than Transient.
Shallow types via Forgetful do not require shape checks throughout
typed code, and the 1-level wrappers can dynamically cooperate with
deep-wrapped values; that is, the interactions do not require a static
analysis because the wrappers carry information.

A different approach is to adapt the idea of confined types [6]. If
the type system can prove that a value originates in typed code and
never escapes to untyped, then deep and shallow can freely share the
value. In particular, a shallow function with a confined-type domain
may not require any shape checks.

7.4 evaluate alternative shape designs

The shape checks in Shallow Racket enforce full type constructors
(chapter 5.1.1). Other designs are possible, though, and may lead to
a better tradeoff between type guarantees and performance.

One direction is to strenghten the run-time checks to go beyond
the outermost type constructor. Some designs may benefit from two
or three levels of constructor checks. In the limit, a transient could
enforce all first-order properties.

A second alternative is to weaken run-time checks for maximal per-
formance. The current shapes check too much, in the sense that the
Typed Racket optimizer cannot use all the information. For example,
the Shallow check procedure? does not help any optimizations. If
performance is the only concern, then an implementation can let the
dynamically-typed runtime system handle function applications.

7.5 171

7.5 other challenges

• In a performance lattice, an inspection of the configurations
with exactly one typed unit can reveal the lack of fast paths
through the lattice. Namely, if any of these bottom-level con-
figurations suffer high overhead then a one-by-one conversion
path is going to suffer similar overhead at some step. Perhaps
there are other properties that can be predicted without explor-
ing a full lattice. Gariano et al. [39], for example, suggest that
transient slowdowns can be diagnosed by studying each typed
unit individually.

• The performance evaluation method begins by toggling types
at a certain granularity. The definition of granularity in chap-
ter 3.2.2 does not allow for imprecise types such as List(Dyn)

and Function([Dyn], Str). Adapting the definition to such
types would improve our understanding of prior work that ran-
domly generates imprecise types [59, 116].

• Design a semantics, X, that eagerly checks pairs like the Natural
semantics and wraps/unwraps functions like Forgetful. Prove
that X does not satisfy complete monitoring, but can satisfy
blame soundness and completeness. There may be an undis-
covered variant of complete monitoring that distinguishes this
X semantics from the basic Forgetful semantics, which may omit
checks on the elements of a pair.

• Rephrase complete monitoring in semantic terms, using types
and observable behaviors instead of syntax.

• The error preorder (.) looks like the term precision relation
(v) from the gradual typing literature [73, 87]. To investigate
whether there is a deeper connection, use the Natural and For-
getful semantics to design two compilers into a core language
that satisfies graduality. KafKa may be a good starting point [21].
Prove that the Forgetful compiler always gives less-precise ex-
pressions according to the term precision relation. Test whether
core-language term precision can be used to indirectly prove
the surface-language error preorder.

• Implement transient blame with multiple parents per link entry.
For operations such as hash-ref, dynamically choose which par-
ent to follow. A language of blame types may be necessary to
guide choices. Measure the quality of errors and the perfor-
mance cost that results from the extra bookkeeping.

• Build a method to help programmers find the best mixture of
deep and shallow types in a codebase. Static analysis may suf-
fice because the goal is to predict relative performance, not the

172

absolute cost [16]. Running the untyped configuration can pro-
vide data about the number of boundary-crossings that occur.
Running the configurations with exactly one typed module may
help predict the cost of interactions, especially for transient [39].

• The cost of a deep boundary depends heavily on its type, and an
existential type is often cheaper than types that exposes internal
details. Design a refactoring that converts a transparent typed
API to use opaque existentials.

• Add erased types to the mix; determine what is needed for deep
types, shallow types, and optional types to interact. The prior
work on like types, which combines optional and concrete types,
may be a useful guide [82, 123].

8
C O N C L U S I O N

Deep and shallow types can interoperate, both in theory and in a
practical implementation, and the synthesis brings measurable bene-
fits. The benefits improve all three main dimensions of a mixed-typed
programming:

Z Proofs: Switching from shallow to deep types strengthens the
formal guarantees for a block of code. In Typed Racket, a
one-line change thus improves types from local spot-checks to
claims that hold throughout the program, including in untyped
modules.

Z Performance: Flipping between deep and shallow can improve
performance. In fully-typed programs, deep types have zero
cost—and often run faster due to type-directed optimizations.
In mixed programs, shallow avoids the tremendous overheads
of deep type boundaries.

Z People: Shallow types can express new combinations of typed
and untyped code because they enforce weaker guarantees. Pro-
grammers can choose between this flexibility and the stability
of deep types as they see fit, for each part of a codebase.

Integrating deep and shallow within one codebase—as opposed to
picking one or the other—improves several concrete examples (chap-
ter 6.3.2). These examples all use shallow types for code that is tightly
coupled to an untyped boundary and deep types everywhere else.
More experience is likely to reveal other patterns and best practices.
For now, I recommend shallow types when initially converting an un-
typed program. Once the types are in place and the boundaries are
clear, then moving from shallow to deep may assist with debugging
tasks and may improve performance.

The foundations of this work are the methods that I developed to
systematically measure mixed-typed languages.

1. The performance evaluation methods from (chapter 3) offer a
comprehensive and scalable picture of run-time costs. An ex-
haustive method summarizes the complete dataset when feasi-
ble, and an approximate method gives an empirically-justified
weakening otherwise.

2. The design evaluation method (chapter 4) rigorously assess the
strengths and weaknesses of static types. Our application of this
method leads to the most precise characterization of designs in
the literature.

173

174

Overall, my dissertation brings us closer to useful mixed-typed lan-
guages. The step from untyped-or-typed to mixed-typed has presented
a serious challenge to the conventional wisdom about static types.
Standard techniques that realize strong guarantees and fast perfor-
mance in a fully-typed setting yield weaker guarantees and slower
running times in mixed programs. In the words of one anonymous
Racket survey respondent, mixed languages “seemed to combine the
best of both worlds but in practice seem to combine mainly the
downsides” because of friction between static and dynamic typing.
Methods and measurements have improved our understanding of the
design space and articulated the benefits of mixing deep and shallow
types to soften the edges. With both styles available, programmers
can avoid severe performance and expressiveness issues. Yet much
remains to be done, especially to see how programmers comprehend
the new types and leverage the new choices.

A
A P P E N D I X

a.1 sample validation

The approximate evaluation method in chapter 3.3 uses simple ran-
dom sampling to guess the proportion of D-deliverable configura-
tions in a benchmark. Random sampling is statistically likely to yield
an accurate and precise guess, and indeed figures 6 and 6 present
correct and thin intervals. But sampling can go poorly. An unlucky
guess based on r = 10 samples that each contain s = 10∗N of the
absolute-fastest configurations is overly optimistic. The figures in
this section double-check our earlier results with additional samples
and suggest that precise intervals are indeed the norm.

These validation results use new, randomly-generated random sam-
ples. In this section, one sampling experiment for a benchmark with
N modules is a collection of r = 10 samples that each contain s =

10∗N configurations chosen uniformly at random without replace-
ment. The question is whether the sampling experiments, as a whole,
are typically accurate. One test of accuracy is to measure the average
distance from sample conclusions to the truth. More precisely, for 200

evenly-spaced values of D between 1 and 20, the first test compares
the true proportion of D-deliverable configurations to average dis-
tance across all upper and lower-bound guesses generated from each
sample experiment. A second test is to validate each upper and lower
bound individually by taking its distance and negating the number if
the guess is in the wrong direction.

Figure 87 counts the average distance from an approximation to the
truth across 800 sampling experiments. If the samples are accurate,
these distances should be close to zero. And indeed, the worst av-
erage distance is 4% away from the true proportion of D-deliverable
configurations.

Figure 88 presents data on both the accuracy and correctness of 800

different sampling experiments. For each individual guess, the data
records both its distance from the truth and whether the direction
is correct. Ideally, every guess should end up with a small positive
number. The figure is slightly worse, but still good. Most guesses
fall within 0% and 5% from the truth. The few bad guesses end up
with a worst case of 9% off in the correct direction and -4% off in the
misleading one.

175

176

take5 tetris

synth quadU

quadT

Figure 87: Average distance from the true proportion of D-deliverable
configurations across 800 approximate intervals.

A.1 177

take5 tetris

synth quadU

quadT

Figure 88: Exact difference between the true proportion of D-
deliverable configurations and the bounds at each point along 800

approximate intervals. A negative number reflects a misleading up-
per or lower bound.

178

a.2 deep vs . shallow overhead

Figures 89, 90, and 91 compare deep and shallow types to the extreme.
Whereas the plots in chapter 5.4.2 stop at 20x overhead, these go out
to the worst-case overhead.

A.2 179

sieve-7.8.0.5, sieve-transient

111111111 222222222 15.62x15.62x15.62x15.62x15.62x15.62x15.62x15.62x15.62x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
4 confgurations

sieve-7.8.0.5 sieve-transient

forth-7.8.0.5, forth-transient

111111111 222222222 5823.21x5823.21x5823.21x5823.21x5823.21x5823.21x5823.21x5823.21x5823.21x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

forth-7.8.0.5 forth-transient

fsm-7.8.0.5, fsm-transient

111111111 222222222 2.38x2.38x2.38x2.38x2.38x2.38x2.38x2.38x2.38x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

fsm-7.8.0.5 fsm-transient

fsmoo-7.8.0.5, fsmoo-transient

111111111 222222222 420.45x420.45x420.45x420.45x420.45x420.45x420.45x420.45x420.45x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

fsmoo-7.8.0.5 fsmoo-transient

mbta-7.8.0.5, mbta-transient

111111111 1.91x1.91x1.91x1.91x1.91x1.91x1.91x1.91x1.91x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

mbta-7.8.0.5 mbta-transient

morsecode-7.8.0.5, morsecode-transient

111111111 222222222 2.77x2.77x2.77x2.77x2.77x2.77x2.77x2.77x2.77x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

morsecode-7.8.0.5 morsecode-transient

zombie-7.8.0.5, zombie-transient

111111111 222222222 46.23x46.23x46.23x46.23x46.23x46.23x46.23x46.23x46.23x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16 confgurations

zombie-7.8.0.5 zombie-transient

Figure 89: Deep vs. Shallow (1/3).

180

dungeon-7.8.0.5, dungeon-transient

111111111 222222222 15273.83x15273.83x15273.83x15273.83x15273.83x15273.83x15273.83x15273.83x15273.83x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

dungeon-7.8.0.5 dungeon-transient

jpeg-7.8.0.5, jpeg-transient

111111111 222222222 23.18x23.18x23.18x23.18x23.18x23.18x23.18x23.18x23.18x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

jpeg-7.8.0.5 jpeg-transient

zordoz-7.8.0.5, zordoz-transient

111111111 222222222 2.75x2.75x2.75x2.75x2.75x2.75x2.75x2.75x2.75x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
32 confgurations

zordoz-7.8.0.5 zordoz-transient

lnm-7.8.0.5, lnm-transient

111111111 1.23x1.23x1.23x1.23x1.23x1.23x1.23x1.23x1.23x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

lnm-7.8.0.5 lnm-transient

suffxtree-7.8.0.5, suffxtree-transient

111111111 222222222 31.38x31.38x31.38x31.38x31.38x31.38x31.38x31.38x31.38x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
64 confgurations

sufxtree-7.8.0.5 sufxtree-transient

kcfa-7.8.0.5, kcfa-transient

111111111 222222222 4.33x4.33x4.33x4.33x4.33x4.33x4.33x4.33x4.33x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
128 confgurations

kcfa-7.8.0.5 kcfa-transient

snake-7.8.0.5, snake-transient

111111111 222222222 12.02x12.02x12.02x12.02x12.02x12.02x12.02x12.02x12.02x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
256 confgurations

snake-7.8.0.5 snake-transient

Figure 90: Deep vs. Shallow (2/3).

A.2 181

take5-7.8.0.5, take5-transient

111111111 222222222 44.06x44.06x44.06x44.06x44.06x44.06x44.06x44.06x44.06x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
256 confgurations

take5-7.8.0.5 take5-transient

acquire-7.8.0.5, acquire-transient

111111111 222222222 4.22x4.22x4.22x4.22x4.22x4.22x4.22x4.22x4.22x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
512 confgurations

acquire-7.8.0.5 acquire-transient

tetris-7.8.0.5, tetris-transient

111111111 222222222 12.75x12.75x12.75x12.75x12.75x12.75x12.75x12.75x12.75x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
512 confgurations

tetris-7.8.0.5 tetris-transient

synth-7.8.0.5, synth-transient

111111111 222222222 47.34x47.34x47.34x47.34x47.34x47.34x47.34x47.34x47.34x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
1,024 confgurations

synth-7.8.0.5 synth-transient

gregor-7.8.0.5, gregor-transient

111111111 1.72x1.72x1.72x1.72x1.72x1.72x1.72x1.72x1.72x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
8,192 confgurations

gregor-7.8.0.5 gregor-transient

quadT-7.8.0.5, quadT-transient

111111111 222222222 25.75x25.75x25.75x25.75x25.75x25.75x25.75x25.75x25.75x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16,384 confgurations

quadT-7.8.0.5 quadT-transient

quadU-7.8.0.5, quadU-transient

111111111 222222222 54.95x54.95x54.95x54.95x54.95x54.95x54.95x54.95x54.95x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%
16,384 confgurations

quadU-7.8.0.5 quadU-transient

Figure 91: Deep vs. Shallow (3/3).

182

Γ `s s0 : τ0 Γ `s s1 : τ1

Γ `s 〈s0, s1〉 : τ0×τ1

Γ `s s0 : xτ0y Γ `s s1 : xτ1y
Γ `s 〈s0, s1〉 : xτ0×τ1y

Γ `s s0 : U
Γ `s unop s0 : U

Γ `s e0 : xτ0y ∆(unop, τ0) = τ1

Γ `s unop e0 : xτ1y

Γ `s s0 : U Γ `s s1 : U
Γ `s binop s0 s1 : U

Γ `s e0 : τ0 Γ `s e1 : τ1

∆(binop, τ0, τ1) = τ2

Γ `s binop e0 e1 : τ2

Γ `s s0 : U Γ `s s1 : U
Γ `s app{s0} s1 : U

Γ `s e0 : τ0⇒τ1 Γ `s e1 : τ0

Γ `s app{e0} e1 : τ1

Γ `s e0 : τ0 τ0 <: τ1

Γ `s e0 : τ1

Figure 92: Additional surface typing rules

a.3 missing rules

Figure 92 and figure 93 present unremarkable typing and completion
rules that are omitted from chapter 6.1. Note that the completion
rules depend on the full typing derivation of a term to uncover, for
example, the types of the arguments to a binary operation. The model
in chapter 4 avoids this technicality by asking for annotations on elim-
ination forms.

A.3 183

Γ `s i0 : U i0 Γ `s i0 : τ0 i0 Γ `s i0 : xτ0y i0

Γ `s e0 : U e2

Γ `s e1 : U e3

Γ `s 〈e0, e1〉 : U 〈e2, e3〉

Γ `s e0 : τ0 e2

Γ `s e1 : τ1 e3

Γ `s 〈e0, e1〉 : τ0×τ1 〈e2, e3〉

Γ `s e0 : xτ0y e2

Γ `s e1 : xτ1y e3

Γ `s 〈e0, e1〉 : xτ0×τ1y 〈e2, e3〉
Γ `s e0 : U e1

Γ `s unop e0 : U unop e1

Γ `s e0 : τ0×τ1 e1

Γ `s unop e0 : τ0 unop e1

Γ `s e0 : xτ0×τ1y e1

shape (τ0) = σ0

Γ `s unop e0 : xτ0y scan σ0 fst e1

Γ `s e0 : U e2

Γ `s e1 : U e3

Γ `s binop e0 e1 : U binop e2 e3

Γ `s e0 : τ0 e2

Γ `s e1 : τ1 e3

Γ `s binop e0 e1 : τ2 binop e2 e3

Γ `s e0 : xτ0y e2

Γ `s e1 : xτ1y e3

Γ `s binop e0 e1 : xτ2y binop e2 e3

Figure 93: Additional surface-to-evaluation completion rules

184

Benchmark Deep % Shallow % D. or S. %
sieve 0 0 100

forth 0 0 50

fsm 100 100 100

fsmoo 0 0 50

mbta 100 100 100

morsecode 100 100 100

zombie 0 0 50

dungeon 0 0 67

jpeg 0 100 100

zordoz 100 100 100

lnm 100 100 100

suffixtree 0 0 12

kcfa 33 100 100

snake 0 0 0

take5 0 100 100

Figure 94: Percent of 3-deliverable paths in three lattices: the deep-
typed lattice, the shallow-typed lattice, and a hybrid that chooses the
best of deep or shallow types at each point.

a.4 more evidence for deep and shallow

a.4.1 Migration Paths

Shallow types make step-by-step migration more practical in Typed
Racket. Originally, with deep types, a programmer who adds types
one module at a time is likely to hit a performance wall; that is, a
few configurations along the migration path are likely to suffer a
large overhead. Adding more deep types is a sure way to reduce
the overhead, especially if the programmer adds the best-possible
types (figure 21), but these multi-step pitfalls contradict the promise
of migratory typing. High overhead makes it hard to tell whether the
new types are compatible with the rest of the codebase.

By choosing deep or shallow types at each point along a path, the
worst-case overhead along migration paths goes down. Figure 94

quantifies the improvement by showing the percent of all paths that
are 3-deliverable at each step. With deep types alone, all paths in nine
benchmarks hit a point that exceeds the 3x limit. With shallow types
alone, all paths in seven benchmarks exceed the limit as well. With
the mix, however, only one benchmark (snake) has zero 3-deliverable
paths. Fine-grained combinations of deep and shallow types can fur-
ther improve the number of viable migration paths. In fsm, for exam-

A.4 185

ple, every path is 1.1-deliverable if the programmer picks the fastest-
running mix of deep and shallow types for each configuration.

a.4.2 Case Study: GTP Benchmarks

For six small benchmarks, I measured the full space of 3N config-
urations that can arise by combining deep and shallow types. Each
configuration ran successfully, affirming that deep and shallow can in-
teroperate. Furthermore, a surprising percent of all 2N mixed-typed
configurations in each benchmark ran fastest using a mixture of deep
and shallow types:

• 37.50% of fsm configurations;

• 25.00% of morsecode configurations;

• 37.50% of jpeg configurations;

• 55.47% of kcfa configurations;

• 6.25% of zombie configurations; and

• 46.88% of zordoz configurations.

In fsm, for example, there are sixteen mixed-typed configurations.
Five of these cannot mix deep and shallow because they contain at
most one typed module. Of the remaining 11 configurations, over
half run fastest with a combination of deep and shallow types.

B I B L I O G R A P H Y

[1] Martin Abadi, Luca Cardelli, Benjamin C. Pierce, and Gor-
don D. Plotkin. Dynamic typing in a statically typed language.
TOPLAS, 13(2):237–268, 1991.

[2] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip
Wadler. Blame for all. In POPL, pages 201–214, 2011.

[3] Alexander Aiken and Brian R. Murphy. Static type inference in
a dynamically typed language. In POPL, pages 279–290, 1991.

[4] Alexander Aiken, Edward L. Wimmers, and T.K. Lakshman.
Soft typing with conditional types. In POPL, pages 163–173,
1994.

[5] Esteban Allende, Oscar Callaú, Johan Fabry, Éric Tanter, and
Marcus Denker. Gradual typing for Smalltalk. Science of Com-
puter Programming, 96(1):52–69, 2013.

[6] Esteban Allende, Johan Fabry, Ronald Garcia, and Éric Tanter.
Confined gradual typing. In OOPSLA, pages 251–270, 2014.

[7] Deyaaeldeen Almahallawi. Towards Efficient Gradual Typing via
Monotonic References and Coercions. PhD thesis, Indiana Univer-
sity, 2020.

[8] Kenneth R. Anderson and Duane Rettig. Performing Lisp anal-
ysis of the FANNKUCH benchmark. ACM SIGPLAN Lisp Point-
ers, 7(4):2–12, 1994.

[9] Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfield, Vasily
Kirilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-
Hochstadt. Pycket: A tracing JIT for a functional language. In
ICFP, pages 22–34, 2015.

[10] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and
Sam Tobin-Hochstadt. Sound gradual typing: only mostly
dead. PACMPL, 1(OOPSLA):54:1–54:24, 2017.

[11] Gavin Bierman, Erik Meijer, and Mads Torgersen. Adding dy-
namic types to C#. In ECOOP, pages 76–100, 2010.

[12] Gavin Bierman, Martin Abadi, and Mads Torgersen. Under-
standing TypeScript. In ECOOP, pages 257–281, 2014.

[13] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund,
Gregor Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad.

187

188 Bibliography

Thorn: Robust, concurrent, extensible scripting on the JVM. In
OOPSLA, pages 117–136, 2009.

[14] Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-
Hochstadt. Practical optional types for Clojure. In ESOP, pages
68–94, 2016.

[15] Gilad Bracha and David Griswold. Strongtalk: Typechecking
Smalltalk in a production environment. In OOPSLA, pages 215–
230, 1993.

[16] John Peter Campora, Sheng Chen, and Eric Walkingshaw. Casts
and costs: Harmonizing safety and performance in gradual typ-
ing. PACMPL, 2(ICFP):98:1–98:30, 2018.

[17] Robert Cartwright. User-defined types as an aid to verifying
LISP programs. In ICALP, pages 228–256, 1976.

[18] Giuseppe Castagna and Victor Lanvin. Gradual typing with
union and intersection types. PACMPL, 1(ICFP):41:1–41:28,
2017.

[19] Guiseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and
Jeremy G. Siek. Gradual typing: A new perspective. PACMPL,
3(POPL):16:1–16:32, 2019.

[20] Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall
Roch, and Gabriel Levy. Fast and precise type checking for
JavaScript. PACMPL, 1(OOPSLA):56:1–56:30, 2017.

[21] Benjamin W. Chung, Paley Li, Francesco Zappa Nardelli, and
Jan Vitek. KafKa: Gradual typing for objects. In ECOOP, pages
12:1–12:23, 2018.

[22] Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. Ad-
vanced macrology and the implementation of Typed Scheme. In
SFP. Université Laval, DIUL-RT-0701, pages 1–14, 2007.

[23] Dart. The Dart type system, 2020. URL https://dart.dev/

guides/language/type-system. Accessed 2020-09-04.

[24] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan,
and Matthias Felleisen. Correct blame for contracts: No more
scapegoating. In POPL, pages 215–226, 2011.

[25] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias
Felleisen. Complete monitors for behavioral contracts. In ESOP,
pages 214–233, 2012.

[26] Christos Dimoulas, Max S. New, Robert Bruce Findler, and
Matthias Felleisen. Oh lord, please don’t let contracts be mis-
understood (functional pearl). In ICFP, pages 117–131, 2016.

https://dart.dev/guides/language/type-system
https://dart.dev/guides/language/type-system

Bibliography 189

[27] Mike Fagan. Soft Typing: An Approach to Type Checking for Dy-
namically Typed Languages. PhD thesis, Rice University, 1992.

[28] Daniel Feltey. Gradual typing for first-class modules. Master’s
thesis, Northeastern University, 2015.

[29] Daniel Feltey, Ben Greenman, Christophe Scholliers,
Robert Bruce Findler, and Vincent St-Amour. Collapsible
contracts: Fixing a pathology of gradual typing. PACMPL, 2

(OOPSLA):133:1–133:27, 2018.

[30] E.C. Fieller. Some problems in interval estimation. Journal of the
Royal Statistical Society, 16(2):175–185, 1957.

[31] Robert Bruce Findler. Behavioral Software Contracts. PhD thesis,
Rice University, 2002.

[32] Robert Bruce Findler and Matthias Blume. Contracts as pairs
of projections. Technical Report TR-2006-01, University of
Chicago, 2006.

[33] Robert Bruce Findler and Matthias Felleisen. Contracts for
higher-order functions. In ICFP, pages 48–59, 2002.

[34] Cormac Flanagan. Effective Static Debugging via Componential
Set-Based Analysis. PhD thesis, Rice University, 1997.

[35] Cormac Flanagan and Matthias Felleisen. Componential set-
based analysis. In PLDI, pages 235–248, 1997.

[36] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi,
Stephanie Weirich, and Matthias Felleisen. Catching bugs in
the web of program invariants. In PLDI, pages 23–32, 1996.

[37] Matthew Flatt. Compilable and composable macros: You want
it when? In ICFP, pages 72–83, 2002.

[38] Richard P. Gabriel. Performance and evaluation of LISP systems.
MIT Press, 1985.

[39] Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael
Homer, and James Noble. Which of my transient type checks
are not (almost) free? In VMIL, pages 58–66, 2019.

[40] Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. Fine-
grained interoperability through mirrors and contracts. In OOP-
SLA, pages 231–245, 2005.

[41] Michael Greenberg. Space-efficient manifest contracts. In POPL,
pages 181–194, 2015.

[42] Michael Greenberg. The dynamic practice and static theory of
gradual typing. In SNAPL, pages 6:1–6:20, 2019.

190 Bibliography

[43] Ben Greenman and Matthias Felleisen. A spectrum of type
soundness and performance. PACMPL, 2(ICFP):71:1–71:32,
2018.

[44] Ben Greenman and Zeina Migeed. On the cost of type-tag
soundness. In PEPM, pages 30–39, 2018.

[45] Ben Greenman, Matthias Felleisen, and Christos Dimoulas.
Complete monitors for gradual types. PACMPL, 3(OOPSLA):
122:1–122:29, 2019.

[46] Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey,
Robert Bruce Findler, Jan Vitek, and Matthias Felleisen. How to
evaluate the performance of gradual type systems. JFP, 29(e4):
1–45, 2019.

[47] Ben Greenman, Christos Dimoulas, and Matthias Felleisen.
How to evaluate the semantics of gradual types. Submitted for
publication, 2020.

[48] Hugo Musso Gualandi and Roberto Ierusalimschy. Pallene: a
companion language for Lua. Science of Computer Programming,
189(102393):1–15, 2020.

[49] Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shri-
ram Krishnamurthi. Relationally-parametric polymorphic con-
tracts. In DLS, pages 29–40, 2007.

[50] Christopher T. Haynes. Infer: A statically-typed dialect of
Scheme. Technical Report Technical Report 367, Indiana Uni-
versity, 1995.

[51] Fritz Henglein. Global tagging optimization by type inference.
In LFP, pages 205–215, 1992.

[52] Fritz Henglein. Dynamic typing: Syntax and proof theory. Sci-
ence of Computer Programming, 22(3):197–230, 1994.

[53] Fritz Henglein and Jakob Rehof. Safe polymorphic type infer-
ence for a dynamically typed language: Translating Scheme to
ML. In FPCA, pages 192–203, 1995.

[54] David Herman, Aaron Tomb, and Cormac Flanagan. Space-
efficient gradual typing. HOSC, 23(2):167–189, 2010.

[55] Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. On poly-
morphic gradual typing. PACMPL, 1(ICFP):40:1–40:29, 2017.

[56] Matthias Keil and Peter Theimann. Blame assignment for
higher-order contracts with intersection and union. In ICFP,
pages 375–386, 2015.

Bibliography 191

[57] Matthias Keil, Sankha Narayan Guria, Andreas Schlegel,
Manuel Geffken, and Peter Thiemann. Transparent object prox-
ies in JavaScript. In ECOOP, pages 149–173, 2015.

[58] Andrew M. Kent. Advanced Logical Type Systems for Untyped
Languages. PhD thesis, Indiana University, 2019.

[59] Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and
Jeremy G. Siek. Toward efficient gradual typing for structural
types via coercions. In PLDI, pages 517–532, 2019.

[60] Lukas Lazarek, Alexis King, Samanvitha Sundar, Robert Bruce
Findler, and Christos Dimoulas. Does blame shifting work?
PACMPL, 4(POPL):65:1–65:29, 2020.

[61] Erwan Lemonnier. Pluto: or how to make Perl juggle with
billions, 2006. URL http://erwan.lemonnier.se/talks/pluto.

html. Accessed 2020-08-25.

[62] Xavier Leroy and Michael Mauny. Dynamics in ML. In FPCA,
pages 406–426, 1991.

[63] Vladimir I Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. Soviet physics doklady, 10(8):707–
710, 1966.

[64] Andre Murbach Maidl, Fabio Mascarenhas, and Roberto
Ierusalimschy. A formalization of Typed Lua. In DLS, pages
13–25, 2015.

[65] Jacob Matthews and Robert Bruce Findler. Operational seman-
tics for multi-language programs. TOPLAS, 31(3):1–44, 2009.

[66] Philippe Meunier. Modular Set-Based Analysis from Contracts.
PhD thesis, Northeastern University, 2006.

[67] Philippe Meunier, Robert Bruce Findler, Paul Steckler, and
Mitchell Wand. Selectors make set-based analysis too hard.
HOSC, 18:245–269, 2005.

[68] Philippe Meunier, Robert Bruce Findler, and Matthias Felleisen.
Modular set-based analysis from contracts. In POPL, pages 218–
231, 2006.

[69] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348–375, 1978.

[70] David A. Moon. MACLISP reference manual, Revision 0. Tech-
nical report, MIT Project MAC, 1974.

[71] Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew
Flatt, and Stephen Chong. Extensible access control with autho-
rization contracts. In OOPSLA, pages 214–233, 2016.

http://erwan.lemonnier.se/talks/pluto.html
http://erwan.lemonnier.se/talks/pluto.html

192 Bibliography

[72] Fabian Muehlboeck and Ross Tate. Sound gradual typing is
nominally alive and well. PACMPL, 1(OOPSLA):56:1–56:30,
2017.

[73] Max S. New, Daniel R. Licata, and Amal Ahmed. Gradual type
theory. PACMPL, 3(POPL):15:1–15:31, 2019.

[74] Max S. New, Dustin Jamner, and Amal Ahmed. Graduality
and parametricity: together again for the first time. PACMPL, 4

(POPL):46:1–46:32, 2020.

[75] Linh Chi Nguyen and Luciano Andreozzi. Tough behavior in
the repeated bargaining game. A computer simulation study.
EAI Endorsed Trans. Serious Games, 3(8):e5, 2016.

[76] Atsushi Ohori and Kazuhiko Kato. Semantics for communi-
cation primitives in a polymorphic language. In POPL, pages
99–112, 1993.

[77] Kent M. Pittman. The revised MACLISP manual. Technical Re-
port MIT/LCS/TR-295, MIT Laboratory for Computer Science,
1983.

[78] Norman Ramsey. Embedding an interpreted language using
higher-order functions and types. JFP, 21(6):585–615, 2008.

[79] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman,
and Panagiotis Vekris. Safe & efficient gradual typing for Type-
Script. In POPL, pages 167–180, 2015.

[80] Type reconstruction for variable-arity procedures. Dzeng,
hsianlin and haynes, christopher t. In LFP, pages 239–249, 1994.

[81] Brianna M. Ren, John Toman, T. Stephen Strickland, and Jef-
frey S. Foster. The Ruby type checker. In SAC, pages 1565–1572,
2013.

[82] Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Con-
crete types for TypeScript. In ECOOP, pages 76–100, 2015.

[83] Gregor Richards, Ellen Arteca, and Alexi Turcotte. The vm al-
ready knew that: Leveraging compile-time knowledge to opti-
mize gradual typing. PACMPL, 1(OOPSLA):55:1–55:27, 2017.

[84] Richard Roberts, Stefan Marr, Michael Homer, and James Noble.
Transient typechecks are (almost) free. In ECOOP, pages 15:1–
15:29, 2019.

[85] Jeremy Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-
Hochstadt, and Ronald Garcia. Monotonic references for effi-
cient gradual typing. In ESOP, pages 432–456, 2015.

Bibliography 193

[86] Jeremy G. Siek and Walid Taha. Gradual typing for functional
languages. In SFP. University of Chicago, TR-2006-06, pages 81–
92, 2006.

[87] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and
John Tang Boyland. Refined criteria for gradual typing. In
SNAPL, pages 274–293, 2015.

[88] Vincent St-Amour. How to Generate Actionable Advice About Per-
formance Problems. PhD thesis, Northeastern University, 2015.

[89] Vincent St-Amour and Neil Toronto. Experience report: Apply-
ing random testing to a base type environment. In ICFP, pages
351–356, 2013.

[90] Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias
Felleisen. Optimization coaching: Optimizers learn to commu-
nicate with programmers. In OOPSLA, pages 163–178, 2012.

[91] Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and
Matthias Felleisen. Typing the numeric tower. In PADL, pages
289–303, 2012.

[92] Guy L. Steele, Jr. Common Lisp. Digital Press, 2nd edition, 1990.

[93] T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias
Felleisen. Practical variable-arity polymorphism. In ESOP,
pages 32–46, 2009.

[94] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Find-
ler, and Matthew Flatt. Chaperones and impersonators: Run-
time support for reasonable interposition. In OOPSLA, pages
943–962, 2012.

[95] Nikhil Swamy, Cédric Fournet, Aseem Rastogi, Karthikeyan
Bhargavan, Juan Chen, Pierre-Yves Strub, and Gavin Bierman.
Gradual typing embedded securely in JavaScript. In POPL,
pages 425–437, 2014.

[96] Asumu Takikawa. The Design, Implementation, and Evaluation of
a Gradual Type System for Dynamic Class Composition. PhD thesis,
Northeastern University, 2016.

[97] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas,
Sam Tobin-Hochstadt, and Matthias Felleisen. Gradual typing
for first-class classes. In OOPSLA, pages 793–810, 2012.

[98] Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-
Hochstadt. Constraining delimited control with contracts. In
ESOP, pages 229–248, 2013.

194 Bibliography

[99] Asumu Takikawa, Daniel Feltey, Earl Dean, Robert Bruce
Findler, Matthew Flatt, Sam Tobin-Hochstadt, and Matthias
Felleisen. Towards practical gradual typing. In ECOOP, pages
4–27, 2015.

[100] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New,
Jan Vitek, and Matthias Felleisen. Is sound gradual typing
dead? In POPL, pages 456–468, 2016.

[101] Satish Thatte. Quasi-static typing. In POPL, pages 367–381,
1990.

[102] Sam Tobin-Hochstadt. Typed Scheme: From Scripts to Programs.
PhD thesis, Northeastern University, 2010.

[103] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage mi-
gration: from scripts to programs. In DLS, pages 964–974, 2006.

[104] Sam Tobin-Hochstadt and Matthias Felleisen. The design and
implementation of Typed Scheme. In POPL, pages 395–406,
2008.

[105] Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for
untyped languages. In ICFP, pages 117–128, 2010.

[106] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper,
Matthew Flatt, and Matthias Felleisen. Languages as libraries.
In PLDI, pages 132–141, 2011.

[107] Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler,
Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent St-
Amour, T. Stephen Strickland, and Asumu Takikawa. Migratory
typing: Ten years later. In SNAPL, pages 17:1–17:17, 2017.

[108] Matías Toro, Elizabeth Labrada, and Éric Tanter. Gradual para-
metricity, revisited. PACMPL, 3(POPL):17:1–17:30, 2019.

[109] Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and
Shriram Krishnamurthi. The behavior of gradual types: a user
study. In DLS, pages 1–12, 2018.

[110] Esko Ukkonen. On-line construction of suffix trees. Algorith-
mica, 14(3):249–260, 1995.

[111] Tom Van Cutsem and Mark S Miller. Trustworthy proxies. In
ECOOP, pages 154–178, 2013.

[112] Bill Venners. Twitter on Scala, 2009. URL https://www.

artima.com/scalazine/articles/twitter_on_scala.html. Ac-
cessed 2020-08-25.

https://www.artima.com/scalazine/articles/twitter_on_scala.html
https://www.artima.com/scalazine/articles/twitter_on_scala.html

Bibliography 195

[113] Michael M. Vitousek. Gradual Typing for Python, Unguarded. PhD
thesis, Indiana University, 2019.

[114] Michael M. Vitousek, Andrew Kent, Jeremy G. Siek, and Jim
Baker. Design and evaluation of gradual typing for Python. In
DLS, pages 45–56, 2014.

[115] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek.
Big types in little runtime: Open-world soundness and collabo-
rative blame for gradual type systems. In POPL, pages 762–774,
2017.

[116] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. Op-
timizing and evaluating transient gradual typing. In DLS, pages
28–41, 2019.

[117] Philip Wadler. A complement to blame. In SNAPL, pages 309–
320, 2015.

[118] Philip Wadler and Robert Bruce Findler. Well-typed programs
can’t be blamed. In ESOP, pages 1–15, 2009.

[119] Mitchell Wand. A semantic prototyping system. In CC, pages
213–221, 1984.

[120] Jack Williams, J. Garrett Morris, Philip Wadler, and Jakub Za-
lewski. Mixed messages: Measuring conformance and non-
interference in TypeScript. In ECOOP, pages 28:1–28:29, 2017.

[121] Andrew K. Wright. Practical Soft Typing. PhD thesis, Rice Uni-
versity, 1994.

[122] Andrew K. Wright and Matthias Felleisen. A syntactic ap-
proach to type soundness. Information and Computation, pages
38–94, 1994. First appeared as Technical Report TR160, Rice
University, 1991.

[123] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne,
Johan Östlund, and Jan Vitek. Integrating typed and untyped
code in a scripting language. In POPL, pages 377–388, 2010.

	Abstract
	Acknowledgments
	Contents
	What It's All About
	Thesis Statement
	Dissertation Overview
	Specification, Implementation, and Naming
	Names in Prior Work

	Migratory Typing
	Pre-MT: Hits and Misses
	Type Hints
	Soft and Set-Based Inference
	Inference via Dynamic Typing
	Optional Typing
	Type Dynamic

	MT: Observations
	MT-o1: untyped code exists
	MT-o2: types communicate
	MT-o3: sound types catch bugs

	MT: Design Choices
	MT-r1: types for untyped code
	MT-r2: require annotations, reject programs
	MT-r3: sound types
	MT-r4: clear boundaries

	Recent History

	Performance Analysis Method
	Design Criteria
	Representative Benchmarks
	Exponential Compression
	Report Overheads

	Exhaustive Evaluation Method
	By Example
	By Definition
	Known Limitations

	Approximate Evaluation Method
	Statistical Protocol

	Benchmark Selection
	From Programs to Benchmarks

	Application 1: Typed Racket
	Protocol
	Benchmarks
	Performance Ratios
	Overhead Plots
	Threats to Validity

	Application 2: Reticulated Python
	Protocol
	Benchmarks
	Performance Ratios
	Overhead Plots
	Threats to Validity

	Additional Visualizations
	Exact Runtime Plots
	Relative Scatterplots
	Best-Path Plots

	Design Analysis Method
	Chapter Outline
	Assorted Behaviors by Example
	Enforcing a Base Type
	Validating an Untyped Data Structure
	Uncovering the Source of a Mismatch

	Towards a Formal Comparison
	Comparative Properties in Prior Work
	Our Analysis

	Evaluation Framework
	Surface Language
	Semantic Framework
	Type Soundness
	Complete Monitoring
	Blame Soundness, Blame Completeness
	Error Preorder

	Technical Development
	Surface Syntax, Types, and Ownership
	Three Evaluation Syntaxes
	Properties of Interest
	Common Higher-Order Notions of Reduction
	Natural and its Properties
	Co-Natural and its Properties
	Forgetful and its Properties
	Transient and its Properties
	Amnesic and its Properties
	Erasure and its Properties

	Discussion

	Shallow Racket
	Theory
	More-Expressive Static Types
	Removing Type Dynamic
	Adding Subtyping
	From Elaboration to Completion

	Work-in-progress: Blame
	Basics of Transient Blame
	Trusted Libraries Obstruct Blame
	Complex Flows, Tailored Specifications
	Multi-Parent Paths
	Expressive Link-Entry Actions
	Types at Runtime

	Implementation
	Types to Shapes
	Inserting Shape Checks
	Optimizer
	Bonus Fixes and Enhancements

	Performance
	Performance Ratios
	Overhead Plots
	Exact Runtime Plots
	Blame Performance

	Deep and Shallow, Combined
	Model and Properties
	Syntax
	Surface Typing
	Evaluation Syntax
	Evaluation Typing
	Compilation
	Reduction Relation
	Single-Owner Consistency
	Properties

	Implementation
	Deep and Shallow Interaction
	Syntax Re-Use
	Deep–Untyped Utilities

	Evaluation
	Expressiveness
	Performance

	Future Work
	Transient with Blame, Natural without Blame
	Transient Blame Filtering

	Speed up Fully-Typed Transient
	Improving Deep–Transient Interaction
	Evaluate Alternative Shape Designs
	Other Challenges

	Conclusion
	Appendix
	Sample Validation
	Deep vs. Shallow Overhead
	Missing Rules
	More Evidence for Deep and Shallow
	Migration Paths
	Case Study: GTP Benchmarks

